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every small triangle is red

and [ isRed x | x <- things, isSmall x, isTriangle x ]
some small triangle is red

or [ isRed x | x <- things, isSmall x, isTriangle x ]
every small triangle is red

and [ isRed x | x <- things, (isSmall &:& isTriangle) x ]
some small triangle is red

or [ isRed x | x <- things, (isSmall &:& isTriangle) x ]



isHappy :: Person -> Bool

everybody is happy
body :: [Person]
and [ isHappy x | x <- body ]

every xs p=and [ p x | x <- xs ]
every :: [t] -> (t -> Bool) -> Bool
every body 1isHappy



every :: [t] -> (t -> Bool) -> Bool
every xs p =and [ p x | x <- xs ]

loves :: Person -> Person -> Bool
body = [Krithik,Kristin,Callum,Muhammad,Sapphira,
Jessica,Gabrielle,Katie,Divy,Mary,Mark,...]

loves Mark Mary
Mark “loves™ Mary
loves Mark :: 7777



every :: [t] -> (¢t -> Bool) -> Bool
every xs p=and [ p x | x <- xs ]

loves :: Person -> Person -> Bool
body = [Krithik,Kristin,Callum,Muhammad,Sapphira,
Jessica,Gabrielle,Katie,Divy,Mary,Mark,...]

loves Mark Mary
Mark “loves™ Mary
loves Mark :: Person -> Bool

what does this mean 7
every body (loves Mark)



every :: [t] -> (t -> Bool) -> Bool
every xs p=and [ px | x <- xs ]
loves Mark Mary

Mark “loves Mary

every body (loves Mark)
= and [ loves Mark x | x <- body ]
= and [ Mark “loves™ x | x <- body ]

Mark loves every body !



Mark loves every body !
loves Mark -- really means Mark loves

Haskell knows this!

(Mark ~“loves™) :: Person -> Bool
(Mark ~“loves™) x = Mark “loves  x
= loves Mark x



every :: [t] -> (t -> Bool) -> Bool
every xs p =and [ p x | x <- xs8 ]
loves Mark Mary

Mark “loves  Mary

every body (loves Mark)
= and [ loves Mark x | x <- body ]
= and [ Mark “loves™ x | x <- body ]
= and [ (Mark “loves™) x | x <- body ]

Mark loves every body !



some :: [t] -> (t -> Bool) -> Bool
some xs p=or [ px | x < xs ]
Mark “loves Mary

some body loves Mary

or [ b “loves™ Mary | b <- body ]

lovesMary :: Person -> Bool
lovesMary x = x "loves Mary
some body lovesMary

some body ("loves™ Mary)
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Sections

("loves™ Mary) x = x “loves™ Mary
(Mark “loves™) y = Mark “loves™ y
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Sections

1s shorthand for (\x
1s shorthand for (\x
1s shorthand for (\x
1s shorthand for (\x

1s shorthand for (\x
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somebody loves everybody
everybody loves somebody

every body (Mary ~loves) -- Mary loves everybody
lovesEveryBody x = every body (x “loves”) -- x loves everybody
someBodyLovesEveryBody = some body lovesEveryBody

13



A lambda

square X = X * X

square = (\x -> x * X) —— Ax.x XX

hypotenuse a b = sqrt (square a + square b)
hypotenuse = (\a b -> sqrt (square a + square b))

-— Aab.va? + b?
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("loves™ Mary) x = x “loves™ Mary

("loves™ Mary) = (\x -> x “loves™ Mary)

some body ("loves™ Mary) = some body (\x -> x “loves™ Mary)
Jxr € body . z loves Mary

(Mark “loves™) y = Mark “loves™ y

(Mark “loves™) = (\y -> Mark “loves” y)

every body (Mark “loves™) = every body (\y -> Mark ~loves y)
Yy € body . Mark loves y

everybody loves somebody

EveryBodyLovesSomeBody = every body (\x -> some body (\y -> x “loves™ y))
Vo € body . Jy € body . x loves y

example2 = some body (\x -> every body (\y -> x “loves™ y)) —-- 2?2

example3 = some body (\x -> every body (\y -> y “loves™ x)) -- 2?2

example4 = every body (\x -> some body (\y -> y “loves™ x)) —-- 2?2
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data Literal a =P a | N a
newtype Clause a = Or [ Literal a ]
newtype Form a = And[ Clause a |

neg :: Literal a -> Literal a

neg (P a) =N a

neg (N a) =P a

data Atom = A[B|C|D|WI|X|Y|Z deriving Eq

eg = And[ Or[N A, NC, P D], Or[P A, P C], Or[N D] ]
-- (—Av-CvVvD) AN (AvVvC) AN =D

type Val a = [ Literal a ]

16



Ner\eo
T

which is only valid in the empty universe
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o E o

aFb (a=b=90 =
=

which is universally true

This is a type error
— but for a mathematician

a set Is just a set
there is only one emptyset



Haskell keeps track of what we are talking about
— and tells us when we are talking nonsense

Prelude> 1 : [] :: [Int]
[1]

Prelude> tail it

[]

Prelude> False : 1t

<interactive>:26:9: error:
oCouldn't match type 'Int' with 'Bool'
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(&%) :: Bool -> Bool -> Bool

a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> u -> Bool
(&:&) a b x =a x & b x

a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
(a&:&b) x=ax&&bx
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a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
(a &:& b)) x=ax&& Db x

type Pred u = u -> Bool
a :: Pred u
b :: Pred u
a &:& b :: Pred u

(&:&) :: Pred u -> Pred u -> Pred u
(a &:& b) x = a x & b x

21



data Bool = False | True

not
(&&)
)
(<=)
(==
(/=)

and ::

or

:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->

[ Booll]

[ Booll]

Bool

Bool -> Bool ——- A
Bool -> Bool —- V
Bool -> Bool —- —
Bool -> Bool —-- &
Bool -> Bool -- &
-> Bool -— A
-> Bool -V

-— predicates are functions defined on some universe
-— (normally finite) operations on predicates are defined
-— by 'lifting' operations operations on Bool

TT
FF
neg
(&:&)
Cl:1)

bigand ::

bigor

a —> Bool
a —> Bool
(a -> Bool) -> (a -> Bool)

(a ->
(a —>

Bool) -> (a -> Bool) -> (a -> Bool)
Bool) -> (a -> Bool) -> (a -> Bool)

[Pred a] -> Pred a

[Pred a] -> Pred a
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data Bool = False | True

not :: Bool -> Bool

(&&) :: Bool -> Bool -> Bool —-- A
(]]1) :: Bool -> Bool -> Bool -- V
(<=) :: Bool -> Bool -> Bool -- —
(==) :: Bool -> Bool -> Bool —- <«
(/=) :: Bool -> Bool -> Bool -- &
and :: [ Bool] -> Bool -— A
or :: [ Bool]l -> Bool -V

-— predicates are functions defined on some universe
—— (normally finite) operations on predicates are defined
-— by 'lifting' operations operations on Bool

type Pred a = a -> Bool

TT :: Pred a

FF :: Pred a

neg :: Pred a -> Pred a

(&:&) :: Pred a -> Pred a -> Pred a
(l:1) :: Pred a -> Pred a -> Pred a

bigand :: [Pred al] -> Pred a
bigor :: [Pred al] -> Pred a



(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
a &:&b=(N\x ->ax & b x)
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