every small triangle is red
and [isRed x | x <- things, isSmall x, isTriangle x]
some small triangle is red

or [isRed x | x <- things, isSmall x, isTriangle x]

every small triangle is red
and [isRed x | x <- things, isSmall x, isTriangle x]
some small triangle is red

or [isRed x | x <- things, isSmall x, isTriangle x]

every small triangle is red

and [isRed x | x <- things, isSmall x, isTriangle x]
some small triangle is red

or [isRed x | x <- things, isSmall x, isTriangle x]
every small triangle is red

and [isRed x | x <- things, (isSmall &:& isTriangle) x]
some small triangle is red

or [isRed x | x <- things, (isSmall &:& isTriangle) x]

isHappy :: Person -> Bool

everybody is happy
body :: [Person]
and [isHappy x | x <- body]

every xs p=and [p x | x <- xs]
every :: [t] -> (t -> Bool) -> Bool
every body 1isHappy

every :: [t] -> (t -> Bool) -> Bool
every xs p =and [p x | x <- xs]

loves :: Person -> Person -> Bool
body = [Krithik,Kristin,Callum,Muhammad,Sapphira,
Jessica,Gabrielle,Katie,Divy,Mary,Mark,...]

loves Mark Mary
Mark “loves™ Mary
loves Mark :: 7777

every :: [t] -> (¢t -> Bool) -> Bool
every xs p=and [p x | x <- xs]

loves :: Person -> Person -> Bool
body = [Krithik,Kristin,Callum,Muhammad,Sapphira,
Jessica,Gabrielle,Katie,Divy,Mary,Mark,...]

loves Mark Mary
Mark “loves™ Mary
loves Mark :: Person -> Bool

what does this mean 7
every body (loves Mark)

every :: [t] -> (t -> Bool) -> Bool
every xs p=and [px | x <- xs]
loves Mark Mary

Mark “loves Mary

every body (loves Mark)
= and [loves Mark x | x <- body]
= and [Mark “loves™ x | x <- body]

Mark loves every body !

Mark loves every body !
loves Mark -- really means Mark loves

Haskell knows this!

(Mark ~“loves™) :: Person -> Bool
(Mark ~“loves™) x = Mark “loves x
= loves Mark x

every :: [t] -> (t -> Bool) -> Bool
every xs p =and [p x | x <- xs8]
loves Mark Mary

Mark “loves Mary

every body (loves Mark)
= and [loves Mark x | x <- body]
= and [Mark “loves™ x | x <- body]
= and [(Mark “loves™) x | x <- body]

Mark loves every body !

some :: [t] -> (t -> Bool) -> Bool
some xs p=or [px | x < xs]
Mark “loves Mary

some body loves Mary

or [b “loves™ Mary | b <- body]

lovesMary :: Person -> Bool
lovesMary x = x "loves Mary
some body lovesMary

some body ("loves™ Mary)

10

Sections

("loves™ Mary) x = x “loves™ Mary
(Mark “loves™) y = Mark “loves™ y

11

Sections

1s shorthand for (\x
1s shorthand for (\x
1s shorthand for (\x
1s shorthand for (\x

1s shorthand for (\x

12

somebody loves everybody
everybody loves somebody

every body (Mary ~loves) -- Mary loves everybody
lovesEveryBody x = every body (x “loves”) -- x loves everybody
someBodyLovesEveryBody = some body lovesEveryBody

13

A lambda

square X = X * X

square = (\x -> x * X) —— Ax.x XX

hypotenuse a b = sqrt (square a + square b)
hypotenuse = (\a b -> sqrt (square a + square b))

-— Aab.va? + b?

14

("loves™ Mary) x = x “loves™ Mary

("loves™ Mary) = (\x -> x “loves™ Mary)

some body ("loves™ Mary) = some body (\x -> x “loves™ Mary)
Jxr € body . z loves Mary

(Mark “loves™) y = Mark “loves™ y

(Mark “loves™) = (\y -> Mark “loves” y)

every body (Mark “loves™) = every body (\y -> Mark ~loves y)
Yy € body . Mark loves y

everybody loves somebody

EveryBodyLovesSomeBody = every body (\x -> some body (\y -> x “loves™ y))
Vo € body . Jy € body . x loves y

example2 = some body (\x -> every body (\y -> x “loves™ y)) —-- 2?2

example3 = some body (\x -> every body (\y -> y “loves™ x)) -- 2?2

example4 = every body (\x -> some body (\y -> y “loves™ x)) —-- 2?2

15

data Literal a =P a | N a
newtype Clause a = Or [Literal a]
newtype Form a = And[Clause a |

neg :: Literal a -> Literal a

neg (P a) =N a

neg (N a) =P a

data Atom = A[B|C|D|WI|X|Y|Z deriving Eq

eg = And[Or[N A, NC, P D], Or[P A, P C], Or[N D]]
-- (—Av-CvVvD) AN (AvVvC) AN =D

type Val a = [Literal a]

16

Ner\eo
T

which is only valid in the empty universe

17

o E o

aFb (a=b=90 =
=

which is universally true

This is a type error
— but for a mathematician

a set Is just a set
there is only one emptyset

Haskell keeps track of what we are talking about
— and tells us when we are talking nonsense

Prelude> 1 : [] :: [Int]
[1]

Prelude> tail it

[]

Prelude> False : 1t

<interactive>:26:9: error:
oCouldn't match type 'Int' with 'Bool'

19

(&%) :: Bool -> Bool -> Bool

a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> u -> Bool
(&:&) a b x =a x & b x

a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
(a&:&b) x=ax&&bx

20

a :: U -> Bool
b :: U -> Bool
a &:& b :: U -> Bool

(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
(a &:& b)) x=ax&& Db x

type Pred u = u -> Bool
a :: Pred u
b :: Pred u
a &:& b :: Pred u

(&:&) :: Pred u -> Pred u -> Pred u
(a &:& b) x = a x & b x

21

data Bool = False | True

not
(&&)
)
(<=)
(==
(/=)

and ::

or

:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->
:: Bool ->

[Booll]

[Booll]

Bool

Bool -> Bool ——- A
Bool -> Bool —- V
Bool -> Bool —- —
Bool -> Bool —-- &
Bool -> Bool -- &
-> Bool -— A
-> Bool -V

-— predicates are functions defined on some universe
-— (normally finite) operations on predicates are defined
-— by 'lifting' operations operations on Bool

TT
FF
neg
(&:&)
Cl:1)

bigand ::

bigor

a —> Bool
a —> Bool
(a -> Bool) -> (a -> Bool)

(a ->
(a —>

Bool) -> (a -> Bool) -> (a -> Bool)
Bool) -> (a -> Bool) -> (a -> Bool)

[Pred a] -> Pred a

[Pred a] -> Pred a

22

data Bool = False | True

not :: Bool -> Bool

(&&) :: Bool -> Bool -> Bool —-- A
(]]1) :: Bool -> Bool -> Bool -- V
(<=) :: Bool -> Bool -> Bool -- —
(==) :: Bool -> Bool -> Bool —- <«
(/=) :: Bool -> Bool -> Bool -- &
and :: [Bool] -> Bool -— A
or :: [Bool]l -> Bool -V

-— predicates are functions defined on some universe
—— (normally finite) operations on predicates are defined
-— by 'lifting' operations operations on Bool

type Pred a = a -> Bool

TT :: Pred a

FF :: Pred a

neg :: Pred a -> Pred a

(&:&) :: Pred a -> Pred a -> Pred a
(l:1) :: Pred a -> Pred a -> Pred a

bigand :: [Pred al] -> Pred a
bigor :: [Pred al] -> Pred a

(&:&) :: (u -> Bool) -> (u -> Bool) -> (u -> Bool)
a &:&b=(N\x ->ax & b x)

24

