INF1a-CL
NFA DFA regex
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(d) For each of the following regular expressions, draw a non-deterministic finite

state machine that accepts the language described by the regular expression.
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(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.
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(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.
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(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.
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(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.
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For the product construction we can ignore
black hole states in either component



For the sum construction we must include
any black hole state in each component
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Product : OK to ignore
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5. Each diagram shows an FSM. In each case give a regular expression for the
language accepted by the FSM, make a mark in the check box against each
string that it accepts (and no mark against those strings it does not accept),
make a mark in the DFA check box if it is deterministic, and draw an equivalent

DFA if it is not.
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