INF1a-CL

NFA DFA regex
-Tseytin
-Syllogisms
-DPLL
-The arrow rule
-Haskell coding in CL
-Sequent calculus
-Satisfiability and CNF
-Operations on machine languages
-Resolution
-Logic
-Karnaugh maps
Today regex NFA DFA
Monday Syllogisms Arrow Rule KM
Thursday Sequent Calculus CNF Tseytin
Friday DPLL Satisfiability
$\longrightarrow \xrightarrow{a}$ (\rightarrow
\longrightarrow (9

(d) For each of the following regular expressions, draw a non-deterministic finite state machine that accepts the language described by the regular expression.
i. $x^{*} y$
ii. $\left(x^{*} \mid y\right)$
iii. $\left(x^{*} y\right)^{*}$

(d) For each of the following regular expressions, draw a non-deterministic finite state machine that accepts the language described by the regular expression.
i. $x^{*} y$
ii. $\left(x^{*} \mid y\right)$
iii. $\left(x^{*} y\right)^{*}$

(d) For each of the following regular expressions, draw a non-deterministic finite state machine that accepts the language described by the regular expression.
i. $x^{*} y$
ii. $\left(x^{*} \mid y\right)$
iii. $\left(x^{*} y\right)^{*}$

(d) For each of the following regular expressions, draw a non-deterministic finite state machine that accepts the language described by the regular expression.
i. $x^{*} y$
ii. $\left(x^{*} \mid y\right)$
iii. $\left(x^{*} y\right)^{*}$

(d) For each of the following regular expressions, draw a non-deterministic finite state machine that accepts the language described by the regular expression.
i. $x^{*} y$
ii. $\left(x^{*} \mid y\right)$
iii. $\left(x^{*} y\right)^{*}$

DFA

DFA

DFA

For the product construction we can ignore
black hole states in either component

DFA

For the sum construction we must include any black hole state in each component

$z 2 z^{*}$

Product : OK to ignore black hole

(x2) x^{*}

z

sum : must include black hole

5. Each diagram shows an FSM. In each case give a regular expression for the language accepted by the FSM, make a mark in the check box against each string that it accepts (and no mark against those strings it does not accept), make a mark in the DFA check box if it is deterministic, and draw an equivalent DFA if it is not.
(a)

\square
(b)

\square
(c)

(d)

aab \square
aba \square
bab \square
aaa \square
bbb \square
$D F A \square$
a) $\quad(\mathrm{a} \mid \mathrm{b}(\mathrm{a} \mid \mathrm{b}))(\mathrm{a}(\mathrm{a} \mid \mathrm{b}) \mid \mathrm{b}(\mathrm{a} \mid \mathrm{b}(\mathrm{a} \mid \mathrm{b})))$ *
b) $\quad(\mathrm{a} \mid \mathrm{ba*} \mathrm{~b})((\mathrm{a} \mid \mathrm{b}) \mathrm{a} * \mathrm{~b}) * \mid(\mathrm{b} \mid \mathrm{a}(\mathrm{a} \mid \mathrm{b}))(\mathrm{a} \mid \mathrm{b}(\mathrm{a} \mid \mathrm{b}))$ *
c) $\quad(\mathrm{a} \mid \mathrm{ba} \mathrm{a} \mathrm{b})((\mathrm{a} \mid \mathrm{b}) \mathrm{a} * \mathrm{~b})$ *
d) $\quad a((a \mid b)(a a \mid b b)) * \mid(a a \mid b b)((a \mid b)(a a \mid b b))$ *
e) $a((a \mid b)(a a \mid b b))$ *

