INF1a-CL
NFA DFA regex

-Tseytin

-Syllogisms

-DPLL

-The arrow rule
-Haskell coding in CL
-Sequent calculus
-Satisfiability and CNF
-Operations on machine languages
-Resolution

-Logic

-Karnaugh maps

Today regex NFA DFA
Monday Syllogisms Arrow Rule KM

Thursday Sequent Calculus CNF Tseytin
Friday DPLL Satisfiability

(d) For each of the following regular expressions, draw a non-deterministic finite

state machine that accepts the language described by the regular expression.
1. x*y x
(27 |y) }Q) () -

V2R
N

(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.

1. x*y x
il (z*|y) }%)3 ><o> T (@)
ii. (z*y)*

X

LG E

(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.

o 20 o) 0
1. ('Y
x
€ Y
@—‘@ —@
x
>(/ 6\)8/' (\\1 /)\8‘(/ \)
\,,,%/;\) v % \/

(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.

1. x%y x
i @l D, OR¥0
i, (z*y

LG E

o 8\"W@
DS\/@'Y@/EV

(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.

i. x*y x

L CJ y

ii. (z*|y) @
iii. (z*y)*

LG E

S
> O
B -

XxY

DEINORO
OCIRORON
Qo @O

DFA

XxY

> o
Y@

For the product construction we can ignore
black hole states in either component

For the sum construction we must include
any black hole state in each component

joxe
[oNSE RoNC

ea m@@
< ® @

() ® ®

Wwa ® ©®
ONO

® ©

= ©

black hole

© & O

Product : OK to ignore

(=)

o\
0\
(b,\

a, b, c d

(D
Y

2OM0

C “ C
Q=0 0
é a
K
o

)

PO

@ ©

X @ ©

() &)

()

sum : must include black hole

(o) ()

)

5. Each diagram shows an FSM. In each case give a regular expression for the
language accepted by the FSM, make a mark in the check box against each
string that it accepts (and no mark against those strings it does not accept),
make a mark in the DFA check box if it is deterministic, and draw an equivalent

DFA if it is not.
()
b a,t; a
@ -
>‘/ 0o —2 ‘[’/1 \]\

N N\
b

oY)

2

b N
(b) / a,b

N Y
>\ o J—(1)
__/ a \\;//

aab
aba [
bab [
aaa [J
bbb [J
DFAO

aab
aba [
bab [
aaa [J
bbb [J
DFAO

aab [J
aba O
bab [J
aaa
bbb [
DFAO

aab [J
aba
bab [
aaa [J
bbb [
DFAO

aab
aba [J
bab [J
aaa [J
bbb [
DFAO

regex:

regex:

regex:

regex:

regex:

Page 6 of 6

(4 marks]

[4 marks]

[4 marks]

[4 marks]

[4 marks]

aab
aba
bab
aaa
bbb
DFA

aab
aba
bab
aaa
bbb
DFA

aab
aba
bab
aaa
bbb
DFA

aab
aba
bab
aaa
bbb
DFA

aab
aba
bab
aaa
bbb
DFA

(alb(alb)) (a(alb) |Ib(alb(al|b)))*

(a|ba*b) ((a|b)a*b) *| (bla(a|b)) (alb(alb))*
(a|ba*b) ((a|b)a*b) *

a((a|b) (aa|bb)) *| (aa|bb) ((alb) (aa|bb))*

a((alb) (aa|bb))*

