# Informatics 1 CG – Tutorial 3

Carina Silberer

#### Week 4

Last week you discussed in class aspects of language development, specifically speech segmentation and word acquisition. The goal of this tutorial is to revise what you have learnt by performing practical exercises.

### 1 Word Segmentation: Statistical Regularities

**Background** In class, you discussed transitional probability as a means to find word boundaries. Transitional probability is the *conditional probability* of adjacent elements. Conditional probability is defined as:

$$P(y|x) = \frac{p(x,y)}{p(x)} \tag{1}$$

and measures the probability of an event y under the assumption that another event x has happened. For example, y might correspond to the word *are* and x to the word *we*, so P(y|x) would be the probability of *are* following *we*. The term p(x, y) is the *joint probability* of x and y – it measures the probability of the occurrence of both events, x and y. As you learnt in the lecture, transitional probability is estimated as:

$$P(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{frequ(x,y)}{frequ(x)},\tag{2}$$

where the frequency of occurrence of both events x and y, divided by the frequency of event x.

**Exercise** You are given the sequence:

 $\ then immas a w then imble animal$ 

Table 1 contains the transitional probabilities computed for each letter bigram on the basis of the frequencies given in Table 2. For example, the first entry of Table 1 (.14) is the probability that a space ('') will be followed by t, i.e., P(t|''). The second entry gives the probability that t will be followed by h, i.e., P(h|t) = .32, and so. Table 2 should be read as follows: each entry corresponds to the number of times two adjacent letters occur in an underlying text. For example, the cell coloured in grey gives the occurrence frequency of the sequence am, i.e., frequ(a,m) = 245. The last column titled *total* gives the frequencies of single letters (unigrams) as counted in the text. For example, a occurred 9615 times.

Determine the segmentation of the given sequence using transitional probabilities as cues. Do this by filling in the missing values in Table 1 by means of the frequencies given in Table 2. Then complete the chart in Figure 1 and insert the word boundaries.

|   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 1   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| - | .14 | .32 | .09 | .04 | .15 | .11 | .04 | .02 | .32 | .09 | .03 | .04 | .16 | .16 | .05 | .03 | .04 | .15 | .07 |

Table 1: Transitional probabilities between each pair of letters.

|              | , ,  | $\mathbf{t}$ | h h  | e    | n    | i    | m    | a    | $\mathbf{S}$ | W    | b    | 1   | total |
|--------------|------|--------------|------|------|------|------|------|------|--------------|------|------|-----|-------|
| , ,          | 0    | 4123         | 1879 | 578  | 597  | 2039 | 1416 | 3176 | 1955         | 1918 | 1150 | 836 | 28726 |
| t            | 2591 | 286          | 3685 | 1111 | 11   | 674  | 66   | 340  | 164          | 60   | 0    | 134 | 11394 |
| h            | 676  | 269          | 0    | 3106 | 5    | 1025 | 5    | 1296 | 16           | 0    | 6    | 10  | 7241  |
| е            | 4807 | 407          | 17   | 458  | 1341 | 111  | 293  | 687  | 857          | 106  | 34   | 468 | 15251 |
| n            | 1806 | 691          | 8    | 708  | 68   | 231  | 4    | 188  | 313          | 6    | 97   | 81  | 8438  |
| i            | 632  | 1206         | 0    | 320  | 1983 | 2    | 307  | 67   | 1002         | 0    | 90   | 365 | 8278  |
| m            | 357  | 1            | 0    | 764  | 17   | 254  | 38   | 465  | 82           | 0    | 59   | 5   | 3196  |
| a            | 702  | 1290         | 7    | 2    | 2089 | 442  | 245  | 0    | 1070         | 188  | 197  | 625 | 9615  |
| $\mathbf{s}$ | 2425 | 945          | 288  | 943  | 16   | 451  | 51   | 309  | 355          | 37   | 2    | 58  | 7482  |
| W            | 245  | 2            | 440  | 354  | 118  | 515  | 0    | 682  | 42           | 6    | 4    | 17  | 2886  |
| b            | 12   | 17           | 1    | 607  | 3    | 76   | 1    | 91   | 26           | 1    | 1    | 197 | 1801  |
| l            | 596  | 77           | 0    | 780  | 5    | 543  | 13   | 507  | 46           | 9    | 3    | 725 | 4843  |

Table 2: Letter bigram frequencies (source: The strange case of Dr Jekyll and Mr Hyde).

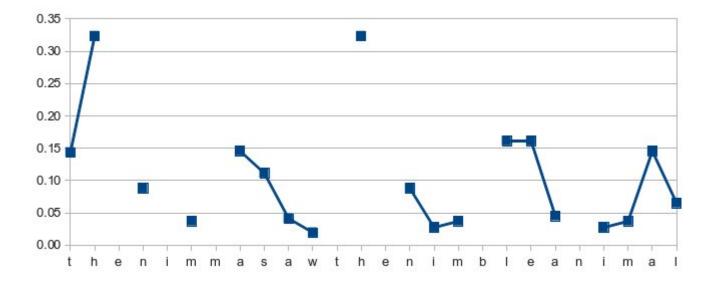



Figure 1: Transitional probabilities for the sequence then immasaw then imbleanimal.

## 2 Word Segmentation: Minimum Description Length

**Exercise** In the lectures you also discussed the Minimum Description Length (MDL). Below are given three input sequences and two possible segmentations corresponding to each input.

- 1. Which segmentation hypothesis do you think will be favoured by the MDL model?
- 2. Compute the MDL for the segmentation hypotheses. Which hypothesis is favoured by the MDL model?
- 3. The two given segmentations of *thenimmasawthenimbleanimal* are both incorrect, (the correct one is *then imma saw the nimble animal*). Furthermore, the correct segmentation is one of many possible segmentations, for two of which you computed the MDL. What needs to be done to find the correct segmentation, assuming it will be the one with the least MDL?
- 4. What do you think is a better cue for word segmentation transitional probabilities or MDL?

| INPUT                           | Segmentation 1                      | Segmentation 2                  |
|---------------------------------|-------------------------------------|---------------------------------|
| the nimma saw the nimble animal | the nim ma saw the nim ble a nim al | the nimma saw the nimble animal |
| then<br>immasaw the animal      | the nim ma saw the a nim al         | the nimma saw the animal        |
| saw the cuteanimal              | saw the cute a nim al               | saw the cute animal             |

### 3 Lexicon Learning

In the lectures you talked about the first task involved in word learning, namely learning to segment a stream of sounds into words. You also discussed the second task that consists of learning to pair sounds with meanings.

**Exercise** Design a model that maps words to their meaning, i.e., the object a word refers to. Table 3 gives a lexicon of word-object mappings<sup>1</sup> the model should ideally learn. Of course your model needs some data from which it can learn the mapping. This data is a set of situations (in which a mother talks to a child). Each situation consists of an utterance and objects that are present and visible. Some examples are given in the Table 4

Hint You can design a model that makes use of statistics.

- You can use conditional probability, where you interpret x or y as word or object, respectively.
- Or measure the *association frequency* between a word and an object:

$$P(word, object) = \frac{frequ(word, object)}{frequ(word_i) + frequ(object_j)}$$
(3)

<sup>&</sup>lt;sup>1</sup>source: http://www.stanford.edu/~mcfrank/materials/ww\_model/data/

| Word                 | Object | Word     | Object |
|----------------------|--------|----------|--------|
| baby                 | BABY   | bear     | BEAR   |
| bigbird              | BIRD   | bigbirds | BIRD   |
| bird                 | BIRD   | book     | BOOK   |
| books                | BOOK   | bunny    | BUNNY  |
| bunnyrabbit          | BUNNY  | cow      | COW    |
| cows                 | COW    | moocow   | COW    |
| moocows              | COW    | duck     | DUCK   |
| duckie               | DUCK   | eyes     | EYES   |
| hand                 | HAND   | hat      | HAT    |
| kitty                | KITTY  | kittycat | KITTY  |
| kittycats            | KITTY  | lamb     | LAMB   |
| lambie               | LAMB   | mirror   | MIRROR |
| $\operatorname{pig}$ | PIG    | piggie   | PIG    |
| piggies              | PIG    | rattle   | RATTLE |
| ring                 | RING   | rings    | RING   |
| sheep                | SHEEP  | bunnies  | BUNNY  |
| birdie               | DUCK   | bird     | DUCK   |

Table 3: Lexicon of word-object mappings.

| UTTERANCE                          | Objects                       |
|------------------------------------|-------------------------------|
| ahhah look we can read books david | BOOK BIRD RATTLE FACE         |
| thats a nice book                  | BOOK BIRD RATTLE KITTY BABY   |
| the bear has a baby bottle         | BOOK BIRD RATTLE FACE BEAR    |
| yes david has baby bottles         | BOOK BIRD RATTLE FACE BEAR    |
| and a bear with a bottle           | BOOK EYES BEAR                |
| theres a mirror                    | BOOK BIRD RATTLE MIRROR BUNNY |
| does david want to read the book   | BOOK EYES                     |
| ah a bunny                         | BOOK BIRD RATTLE MIRROR BUNNY |
| what do bunnies do                 | BOOK BIRD RATTLE MIRROR BUNNY |
| bunnies go hiphop hiphop           | BOOK BIRD RATTLE MIRROR BUNNY |
| lots of toys                       | RING HAND                     |
| we watch big bird dont we          | BIRD RATTLE                   |

Table 4: Example of situations: pairs of utterances and objects present .