Biases and [Ir]rationality
Informatics 1 CG: Lecture 18
Chris Lucas
clucas@inf.ed.ac.uk

Why?
• Human failures and quirks are windows into cognition
• Past examples: overregularisation, theory of mind tasks
• Maybe understanding bad biases can help us avoid them (or not...)

Some classic examples
1. Framing effects
2. Base-rate neglect
3. Representativeness
4. Availability
5. Wason’s card selection task

Framing effects
Which of the following options do you prefer?
A. Sure gain of £240.
B. 25% chance to win £1000, 75% chance to win nothing.

Framing effects
Which of the following options do you prefer?
C. Sure loss of £750.
D. 25% chance to lose nothing, 75% chance to lose £1000.

Framing effects
Which of the following options do you prefer?
A. Sure gain of £240.
B. 25% chance to win £1000, 75% chance to win nothing.
C. Sure loss of £750.
D. 25% chance to lose nothing, 75% chance to lose £1000.
A vs B?
C vs D?

Tversky & Kahneman (1981): The framing of decisions and the psychology of choice
Framing effects

Possible combined bets:
A&C, A&D, B&C, B&D.

Most popular choice: A&D (73% of participants)
25% chance to gain £240, 75% chance to lose £760

Compare to B&C:
25% chance to gain £250, 75% chance to lose £750.

(Tversky & Kahneman (1981): The framing of decisions and the psychology of choice)

Framing effects

What's going on?

Tversky & Kahneman: Prospect theory
• People have non-linear utility functions
 • \(U(+£120) - U(+£110) > U(+£20) - U(+£10) \)
• People treat gains and losses differently: losses more extreme.
• Other phenomena, e.g.,
 • weighting of extreme probabilities

Base rates

Typical human judgment: Green cab

Bayes’ theorem:

\[
P(\text{green|witness=g}) = \frac{P(\text{green})P(\text{witness=g|green})}{P(\text{green})P(\text{witness=g|green}) + P(\text{blue})P(\text{witness=g|blue})}
\]

That is

\[
0.15\times0.80/(0.15\times0.80+0.85\times0.20) = 0.12/0.12+0.17 = 0.41 \text{ (less than .5)}
\]

(Tversky & Tversky (1972) via Maya Bar-Hillel (1980))

Base rate neglect

What’s going on?

Maya Bar-Hillel:
We have heuristics for determining the relevance of info

Kahneman:
The green cab is more representative of the witness’s report

This phenomenon is important:
• Physicians are subject to base-rate neglect in evaluating diagnostic tests!
• Relevant in legal settings too – See Bar-Hillel (1980) for more.

(Tversky & Tversky (1972) via Maya Bar-Hillel (1980): The base rate fallacy in probability judgment)

(Framing & Kahneman (1981): The framing of decisions and the psychology of choice)
Another example

"Bill is 34 years old. He is intelligent, but unimaginative, compulsive, and generally lifeless. In school, he was strong in mathematics but weak in social studies and humanities."

Rank the following statements in terms of how likely they are to be true:

- Bill is a physician who plays poker for a hobby.
- Bill is an architect.
- Bill is an accountant.
- Bill plays jazz for a hobby.
- Bill surfs for a hobby.
- Bill is a reporter.
- Bill is an accountant who plays jazz for a hobby.
- Bill climbs mountains for a hobby.

What's going on?

T&K: Bill being an accountant is representative of his description.
Akin to thinking of \(P(\text{description}|\text{category}) \).

Availability

What's more dangerous?

- Spending an hour on a large aircraft?
- Spending an hour in a typical passenger car?
- Terrorism?
- Being hit by lightning?
Availablity

What's going on?

T&K: We use the ease with which examples come to mind as a proxy for probability.

Wason's card-selection task

The rule:
If there is a vowel on one side of a card, there is an even number on the other side.

What cards should we reverse to evaluate the rule's truth, assuming cards have letters on one side and number on the other?

(Öberauer et al., 1999; Wason, 1968; participants were Edinburgh first-year psychology undergraduates)

Logically: E and 7.

Wason's card-selection task

What's going on?

Wason: People are bad at logic (and "formal operations" in general).

Explanations

1. People aren’t solving the problem we think they are
 • Problem interpretation
 • "Ecologically appropriate" inductive biases
Explanations

2. Errors reflect rational trade-offs given resource limitations
 • “Resource-rational” models and theories
 • “Fast and frugal” heuristics

Explanations

3. Inappropriate standards: participants are doing better
 • Economic decision-making
 • Nash equilibrium and the traveler’s dilemma

What’s “rational”?

• Logic?
• Maximising reward/minimising loss?
• Probability theory?

Explanations

3. People are just bad at solving some problems
 • No rational explanation
 • Local optima
 • Optic nerve
 • The Spandrels of San Marco

Summary

• People deviate from certain standards for rational behaviour
 • Logic
 • Probability theory

• Revealed across a range of tasks, including ones with serious implications.

• Provoke investigations into “bounded rationality” and how human learners represent problems.

Next time

• A deeper look into what counts as rational, and different ways of examining some of the tasks we’ve seen.