Concepts and Categories II Informatics 1 CG: Lecture 16

Chris Lucas

Concepts and Categories

Note:

We're focusing on concepts that are **mental representations of classes** of objects or events.

You might have concepts of "skipping", "justice" or "wanderlust", but the category "things we're talking about today" does not indude them.

Today

(1) Revisit theories of categorisation and(2) Connections to inductive bias and generalisation

The uses of categorisation

What are categories good for?

- 1. Efficient representation
- 2. Communication
- 3. Generalisation

Theories of categorisation

• Definitional (or "classical") theory • Similarity-based approaches • Prototype theory

- Exemplar theory
- Theory theory

Definitional (or "classical") theory

Categories have necessary and sufficient features, e.g.,

"bachelor" $\leftarrow \rightarrow$ unmarried & adult & male

Definitional (or "classical") theory

Pros:

• Intuitive; economical; easy to communicate. Cons:

• Good definitions are hard to find

- Is the pope a bachelor?
- What about an unmarried person in a single-partner long-term relationship?
 What's "male"? "Adult"?
- Can't explain typicality effects or fuzzy boundaries
- Where do definitions come from?

Similarity-based theories: **Prototype theory** Membership is based on similarity to acategory prototype – a

Similarity-based theories: Prototype theory

Pros:

• Economical representation.

Cons:

• Has trouble capturing complex category structure.

Similarity-based theories: Exemplar theory

Membership is based on similarity to known category members.

Similarity-based theories: Exemplar theory

Pros:

 \bullet Flexible representation; can represent categories that don't have a single mode and complex category boundaries

Cons:

• Not economical

Similarity-based theories: Hybrids

Can we combine the advantages of prototype and exemplar theories?

- Idea: lexical concepts can correspond to many clusters of entities, e.g.,: fluffy white cats,
 - tabby cats,that one green cat

Similarity-based theories: Hybrids

We can express both exemplar and prototype theories this way, and treat categorisation as a problem of **density estimation**. Can we use this to understand human categories and concepts in detail?

Similarity-based theories

Challenges to all similarity-based theories: • Where do features come from?

Similarity-based theories

Challenges to all similarity-based theories:

Compositionality

Similarity-based theories

- Is Sweden, Poland, or Hungary most similar to Austria?
 → Sweden (49%) > Hungary (36%)
- Is Sweden, Norway, or Hungary most similar to Austria? \rightarrow Hungary (60%) > Sweden (14%) _(Geography)

• Within-individual variability

Similarity-based theories

Variance effects:

Theory theory

- Category membership depends on causal and explanatory features.
- Causal features are more important than surface features, e.g., Function > appearance (for adults, at least) Cat DNA > Catlike appearance

• Does everything have one natural category? Can we think of category labels as features?

Categories and generalisation

A typical generalisation problem involves:

• A new case and somedata about it,

- Previously-observed cases,
- Some background and contextual information,

We want to draw conclusions about the new case.

Categories and generalisation

We might want to know different things:

- Is it edible?
- Will it try to eat us?
- What's its display resolution?
- How should we label it?

Category-based induction

Example:

If pelicans have a choroid membrane in their eyes $_{and}$ albatrosses have a choroid membrane in their eyes, $_{do}$ all birds have a choroid membrane in their eyes?

Category-based induction

Phenomena:

- Premise typicality
- Premise diversity
- Conclusion specificity
- Premise monotonicity*
- Inclusion fallacy

(Osherson et al., 1990)

Category-based induction	
Phenomena: • Premise diversity	
Hippos have <feature> Hamsters have<feature> Mammals have<feature></feature></feature></feature>	Hippos have <feature> Rhinos have <feature> Mammals have <feature></feature></feature></feature>

Category-based induction

Phenomena: • Conclusion specificity

> Bluejays have <feature> Falcons have <feature> Birds have <feature>

Bluejays have <feature> Falcons have <feature> Animals have <feature>

Category-based induction

Phenomena:

• Premise monotonicity*

Hawks have <feature> Sparrows have <feature> Eagles have <feature> Birds have <feature>

Sparrows have <feature> Eagles have <feature> Birds have <feature>

Category-based induction Phenomena: • Premise monotonicity* Sparrows have <feature> Eagles have <feature> Eagles have <feature> Birds have <feature> Phenomena: Phenomena: Sparrows have <feature> Eagles have <feature> Birds have <fe

Theories

Similarity-based accounts of category-based induction: • Tversky's contrast model (1977): Feature overlap determines salient features. • Osherson et al. (1990): Weighted combination of similarity and coverage Assumes stable, hierarchical categories Connectionist (neural network) model (Sloman, 1993): Proportion of shared features between premises and conclusion Estimated with neural network (and others)

Theory theory strikes again!

Causal knowledge drives category-based induction.

Examples:

- If <<> eats <<>, they're more likely to share a disease.
 If <<> is taxonomically related to <<>, they're more likely to share bone types.
 If <<> is the same weight as <<>, they're likely to need similar amounts of sodium in their diet.

How can we use and combine these kinds of knowledge?

For one proposal, see [1].

Summary

Similarity is at the heart of prototype and exemplar theories, but it's a complex concept in its own right. • Context matters! (What's being compared, goals, ...)

- Category variability
 Trade-off between expressiveness and economy, hybrid models can help

Categories help us generalise

• Category-based induction: features of some categories or exemplas → inferences about others

"Theory theory" issues and questions remain