Recap

- We have so far looked at the words and rules theory.
- Different models of past tense formation.
- Perceptrons and neural networks.
- Watch Pinker discuss his book at:
 https://www.youtube.com/watch?v=mqDGdgmUmvC

Back to language and how words emerge in the first place. We will look at speech segmentation.

Reading:

How Do We Learn Words?

- Knowing a language implies having a **mental lexicon**
- Memorized set of associations among sound sequences, their meanings, and their syntax.
- Speech stream lacks any acoustic analog of the blank spaces between printed words.
- Basic units of linguistic input are not words but entire utterances.
- Child’s task: to discover the words themselves in addition to meaning and syntax.

What do Infants Hear?

- Where are you going?
- How does a bunny rabbit walk?
- Does she walk like you or does she hop hop hop?
- What are you doing?
- Sweep broom.
- Is that a broom?
- I though’ twas a brush.

Adam’s mother (Brown, 1973)

Where Are the Words?

```
THERE DON A TEA KETTLE OF TEN CHIPS
THE RED ON A TEA KETTLE OFTEN CHIPS
THERE, DONATE A KETTLE OF TEN CHIPS
THERE, DONATE A KETTLE OF TEN CHIPS
```

Important Questions

- How does an infant divide the input into reusable units?
- How does she represent those units?
- What does she know about them and when?

Not an end in itself: provides useful units (Peters, 1983) for learning a grammar: lexicon, morphosyntax, phonology.
How do Infants Segment Speech?

Infants make use of multiple cues in the input, most popularly:
- **Stress patterns**: English usually stresses 1st syllable, French always the last; final syllables of words are longer (hamster vs. ham).
- **Phonotactic constraints**: every word must contain a vowel, finite set of consonant clusters that can occur at the beginning of a word, before the first vowel (gdog is not a possible English word).
- **Statistical regularities**: within words, there is a consistent sequence of elements.
- **Bootstrapping** from known words.

Transitional Probability

Words create regularities in the sound sequences of a language.
- There is a consistent sequence of elements within words.
- Sequences that don’t occur within words can only occur at word boundaries.
- Sequences that don’t occur within a word will tend to occur infrequently.
- Thus, we can find word boundaries by looking for unlikely transitions.

\[
P(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{\text{freq}(x,y)}{\text{freq}(x)}
\]

Transitional Probability

Suppose the phoneme [ð] occurs 200,000 times in a text:
- 190,000 times are before a vowel (as in the, this);
- 200 times are before [m].

\[
p(\text{vowel}|\delta) = \frac{190,000}{200,000} = .95
\]
\[
P(m|\delta) = \frac{200}{200,000} = .001
\]
Saffran et al. (1996) asked whether 8-month-old infants can extract information about word boundaries solely on the basis of statistical information.

- Create “language” from nonsense words.
- Infants listen to synthesized language (tokibu, gikoba).
- Then, test: can infants distinguish words (tokibu) vs. part-words (bugikobu)?
Headturn Preference Procedure

![Image showing a study setup](image)

Results

- Infants show longer listening times for part-words
- Infants can extract information about sequential statistics of syllables (input contained no pauses, intonational patterns)

Interim Summary

- Humans can use statistical information to segment speech.
- But all words were trisyllabic
- So, transitional probabilities were either 1 or .33
- Will this work if these are varied in a more naturalistic way?

Patricia Kuhl: The genius of babies

https://www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies

Lexicons and Segmentation

- The use of transitional probabilities to do word segmentation ignores the fact that words are being learned at the same time.
- There are statistical methods for speech segmentation that incorporate the learning of a lexicon as a sub-component.
- Brent and Cartwright (1996): find the lexicon which minimizes the description of the observed data

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]
MDL and Lexicons

Minimum Description Length

\[\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)} \]

- The MDL principle minimizes the length of words
 shorter words are more plausible
- Minimizes the number of different words
 try to make use of words you already know
- Maximizes the probability of each word
 words recur as often as possible

Brent and Cartwright (1996)

Input

doyouseethekitty
seethekitty
doyoulikethekitty
Segmentation 1

do you see the kitty
see the kitty

do you like the kitty

Lexicon 1
1 do 2 the 3 you 4 like 5 see

Derivation 1
1 3 5 2
5 2
1 3 4 2

Length: 25+10=35

Brent and Cartwright (1996)

Input

doyouseethekitty
seethekitty
doyoulikethekitty
Segmentation 2

do you see the kitty
see the kitty

do you like the kitty

Lexicon 2
1 do 2 the 3 you 4 like 5 see 6 kitty

Derivation 2
1 3 5 2 6
5 2 6
1 3 4 2 6

Length: 26+13=39

Brent and Cartwright (1996)

- MDL model is tested on (phonetically) transcribed speech from the CHILDES corpus.
- An idealization of the raw acoustic signal.
- Model searches for segmentation of the input with least MDL.
- Search algorithm is not incremental; it reads in the entire input before segmenting any part of it.
- Approach does not rely on language-specific input!
- Computational simulations systematically explore hypothesis that distributional regularity is useful for word segmentation.
In order to acquire a lexicon young children segment speech into words using multiple sources of support; focused on distributional regularities.

- transitional probability provides cues
- verified by Saffran et al. (1996) experiments
- computational model of word segmentation
- based on Minimum Description Length Principle

Next lecture: word learning.