Speech Segmentation	1
Informatics 1 CG: Lecture 8	B

Mirella Lapata

School of Informatics University of Edinburgh mlap@inf.ed.ac.uk

January 28, 2016

Reading:

M. R. Brent and T. A. Cartwright (1996). Distributional regularity and phonotactic constraints are useful for segmentation. Cognition 61, 93–125. T. Harley (2001). The Psychology of Language, Chapter 4.

Informatics 1 CG: Lecture 8 Speech Segmentation

Recap

Informatics 1 CG: Lecture 8 Speech Segmentation

The Development of Language

https://www.youtube.com/watch?v=YI1aPCdJaMw http://www.youtube.com/watch?v=_JmA2C1UvUY

• We have so far looked at the words and rules theory.

https://www.youtube.com/watch?v=mqDGdgmUmvc

Back to language and how words emerge in the first place. We will

• Different models of past tense formation.

• Perceptrons and neural networks.

• Watch Pinker discuss his book at:

look at speech segmentation.

How Do We Learn Words?

- Knowing a language implies having a mental lexicon
- Memorized set of associations among sound sequences, their meanings, and their syntax.
- Speech stream lacks any acoustic analog of the blank spaces between printed words.
- Basic units of linguistic input are not words but entire utterances.
- Child's task: to discover the words themselves in addition to meaning and syntax.

What do Infants Hear?

Whereareyougoing? Howdoesabunnyrabbitwalk? Doeshewalklikeyouordoeshegohophophop? Whatareyoudoing? Sweepbroom. Isthatabroom? Ithough'twasabrush.

Adam's mother (Brown, 1973)

Informatics 1 CG: Lecture 8 Speech Segmentation

Informatics

Informatics 1 CG: Lecture 8 Speech Segmentation

Where Are the Words?

THEREDONATEAKETTLEOFTENCHIPS THE RED ON A TEA KETTLE OFTEN CHIPS THERE, DON ATE A KETTLE OF TEN CHIPS THERE, DONATE A KETTLE OF TEN CHIPS

Important Questions

- How does an infant divide the input into reusable units?
- How does she represent those units?
- What does she know about them and when?

Not an end in itself: provides useful units (Peters, 1983) for learning a grammar: lexicon, morphosyntax, phonology.

Infants make use of multiple cues in the input, most popularly:

- Stress patterns: English usually stresses 1st syllable, French always the last; final syllables of words are longer (*hamster* vs. *ham*).
- **Phonotactic constraints:** every word must contain a vowel, finite set of consonant clusters that can occur at the beginning of a word, before the first vowel (*gdog* is not a possible English word).
- **Statistical regularities:** within words, there is a consistent sequence of elements.

Speech Segmentation

• Bootstrapping from known words.

Informatics 1 CG: Lecture 8

Transitional Probability

Words create regularities in the sound sequences of a language.

- There is a consistent sequence of elements within words
- Sequences that don't occur within words can only occur at word boundaries.
- Sequences that don't occur within a word will tend to occur infrequently.
- Thus, we can find word boundaries by looking for unlikely transitions.

Transitional Probability
$$P(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{freq(x,y)}{freq(x)}$$

Informatics 1 CG: Lecture 8 Speech Segmentation

10

Transitional Probability

Suppose the phoneme [ð] occurs 200,000 times in a text:

- 190,000 times are before a vowel (as in *the*, *this*);
- 200 times are before [m].

Transitional Probability

$$p(vowel|\delta) = \frac{190,000}{200,000} = .95$$

 $P(m|\delta) = \frac{200}{200,000} = .001$

Transitional Probability

Saffran et al. (1996) asked whether 8-month-old infants can extract information about word boundaries solely on the basis of statistical information.

- Create "language" from nonsense words.
- Infants listen to synthesized language (tokibu, gikoba).
- Then, test: can infants distinguish words (tokibu) vs. part-words (bugiko)?

tokibugikobagopilatipolutokibu gopilatipolutokibugikobagopila gikobatokibugopilatipolugikoba tipolugikobatipolugopilatipolu tokibugopilatipolutokibugopila tipolutokibugopilagikobatipolu tokibugopilagikobatipolugikoba gopilatipolugikobatokibugopila

Informatics 1 CG: Lecture 8 Speech Segmentation

Informatics 1 CG: Lecture 8 Speech Segmentation

Word Segmentation Experiments

toki<u>bugiko</u>bagopilatipolutokibu gopilatipolutokibugikobagopila gikobatokibugopilatipolugikoba tipolugikobatipolugopilatipolu tokibugopilatipolutokibugopila tipolutokibugopilagikobatipolu tokibugopilagikobatipolugikoba gopilatipolugikobatokibugopila

Word Segmentation Experiments

- Infants are exposed for 2 minutes to nonsense language (*tokibu*, *gopila*, *gikoba*, *tipolu*).
- Only statistical cues to word boundaries
- Then record how long they attend to novel sets of stimuli that either do or do not share some property with the familiarization data.
- Discrimination between *words* and *part-words* (sequences spanning word boundaries)
- If there's a difference, there has been some learning during familiarization.

Headturn Preference Procedure

Results

Interim Summary

- Humans can use statistical information to segment speech.
- But all words were trisyllabic
- So, transitional probabilities were either 1 or .33
- Will this work if these are varied in a more naturalistic way?

Patricia Kuhl: The genius of babies https://www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies

Lexicons and Segmentation

- The use of transitional probabilities to do word segmentation ignores the fact that words are being learned at the same time.
- There are statistical methods for speech segmentation that incorporate the learning of a lexicon as a sub-component.
- Brent and Cartwright (1996): find the lexicon which minimizes the description of the observed data

Minimum Description Length

size(description) = size(lexicon) + size(data-encoding)

MDL and Lexicons Brent and Cartwright (1996)		
 Minimum Description Length size(description) = size(lexicon)+size(data-encoding) The MDL principle minimizes the length of words shorter words are more plausible Minimizes the number of different words try to make use of words you already know Maximizes the probability of each word words recur as often as possible 	Input doyouseethekitty seethekitty doyoulikethekitty Segmentation 1 do you see thekitty see thekitty do you like thekitty Lexicon 1 1 do 2 thekitty 3 you 4 like 5 see Derivation 1 1 3 5 2 5 2 1 3 4 2	Minimum Description Length size(description) = size(lexicon)+size(data-encoding) size(lexicon) = number of characters characters = letters and digits size(data-encoding) = number of characters in derivation Length: 25+10=35

20

Input		
doyouseethekitty		
seethekitty		
doyoulikethekitty		Minimum De
Segmentation 2		size(descripti
do you see thekitty see the kitty	-	size(lexicon)
do you like the kitty	_	size(lexicon)
Lexicon 2		characters =
1 do 2 the 3 you		size(data-end
4 like 5 see 6 kitty		characters in
Derivation 2		Length: 26+
1 3 5 2 6		-
526		
13426		

Informatics 1 CG: Lecture 8

Minimum Descrip	tion Length
-----------------	-------------

Speech Segmentation

(ion) =)+size(data-encoding)

= number of characters letters and digits

coding) = number of derivation

-13 = 39

Brent and Cartwright (1996)

- MDL model is tested on (phonetically) transcribed speech from the CHILDES corpus.
- An idealization of the raw acoustic signal.

Informatics 1 CG: Lecture 8

• Model searches for segmentation of the input with least MDL.

Speech Segmentation

- Search algorithm is not incremental; it reads in the entire input before segmenting any part of it.
- Approach does not rely on language-specific input!
- Computational simulations systematically explore hypothesis that distributional regularity is useful for word segmentation.

In order to acquire a lexicon young children segment speech into words using multiple sources of support; focused on distributional regularities.

- transitional probability provides cues
- verified by Saffran et al. (1996) experiments
- computational model of word segmentation
- based on Minimum Description Length Principle

Next lecture: word learning.

Informatics 1 CG: Lecture 8 Speech Segmentation

24