Speech Segmentation
Informatics 1 CG: Lecture 8

Mirella Lapata

School of Informatics
University of Edinburgh
mlap@inf.ed.ac.uk

January 28, 2016
Reading:

We have so far looked at the words and rules theory.
Different models of past tense formation.
Perceptrons and neural networks.
Watch Pinker discuss his book at:
https://www.youtube.com/watch?v=mpDGdgmUmvC

Back to language and how words emerge in the first place. We will look at speech segmentation.
The Development of Language

- Vegetative sounds (0–6 weeks)
 - Cooing (6 weeks)
 - Laughter (16 weeks)
 - Vocal play (16 weeks–6 months)
 - Babbling (6 months–10 months)

https://www.youtube.com/watch?v=YI1aPCdJaMw
http://www.youtube.com/watch?v=_JmA2C1UvUY
The Development of Language

Vegetative sounds (0–6 weeks)

Cooing (6 weeks)

Laughter (16 weeks)

Vocal play (16 weeks–6 months)

Babbling (6 months–10 months)

Single word utterances (10–18 months)

Two-word utterances speech (18 months)

Telegraphic speech (2 years)

Full sentences (2 years 6 months)

https://www.youtube.com/watch?v=YI1aPCdJaMw
http://www.youtube.com/watch?v=_JmA2C1UvUY
Knowing a language implies having a mental lexicon.

Memorized set of associations among sound sequences, their meanings, and their syntax.

Speech stream lacks any acoustic analog of the blank spaces between printed words.

Basic units of linguistic input are not words but entire utterances.

Child’s task: to discover the words themselves in addition to meaning and syntax.
What do Infants Hear?

Where are you going?
How does a bunny rabbit walk?
Does she walk like you or does she go hop hop hop?
What are you doing?
Sweep broom.
Is that a broom?
I though’ twas a brush.

Adam’s mother (Brown, 1973)
THEREDONATEA KETTL E OFTEN CHIPS
Where Are the Words?

THEREDONATEAKEETTLEOFTENCHIPS

THE RED ON A TEA KETTLE OFTEN CHIPS
THERE DON A TE A KETTLE OF TEN CHIPS

THE RED ON A TEA KETTLE OFTEN CHIPS

THERE, DON ATE A KETTLE OF TEN CHIPS
THEREDONATEA KETTLE OFTEN CHIPS
THE RED ON A TEA KETTLE OFTEN CHIPS
THERE, DONATE A KETTLE OF TEN CHIPS
THERE, DONATE A KETTLE OF TEN CHIPS
Important Questions

- How does an infant divide the input into reusable units?
- How does she represent those units?
- What does she know about them and when?

Not an end in itself: provides useful units (Peters, 1983) for learning a grammar: lexicon, morphosyntax, phonology.
Infants make use of **multiple cues** in the input, most popularly:

- **Stress patterns**: English usually stresses 1st syllable, French always the last; final syllables of words are longer (*hamster* vs. *ham*).

- **Phonotactic constraints**: every word must contain a vowel, finite set of consonant clusters that can occur at the beginning of a word, before the first vowel (*gdog* is not a possible English word).

- **Statistical regularities**: within words, there is a consistent sequence of elements.

- **Bootstrapping** from known words.
Words create **regularities** in the sound sequences of a language.

- There is a **consistent sequence** of elements within words.
- Sequences that don’t occur within words can only occur at word boundaries.
- Sequences that don’t occur within a word will tend to occur infrequently.
- Thus, we can find word boundaries by looking for **unlikely transitions**.

Transitional Probability

\[
P(y|x) = \frac{p(x,y)}{p(x)} \approx \frac{freq(x,y)}{freq(x)}
\]
Suppose the phoneme [ð] occurs 200,000 times in a text:

- 190,000 times are before a vowel (as in the, this);
- 200 times are before [m].

Transitional Probability

\[p(\text{vowel}|\text{ð}) = \frac{190,000}{200,000} = .95 \]

\[P(\text{m}|\text{ð}) = \frac{200}{200,000} = .001 \]
Saffran et al. (1996) asked whether 8-month-old infants can extract information about word boundaries solely on the basis of statistical information.

1. Create “language” from nonsense words.
2. Infants listen to synthesized language (tokibu, gikoba).
3. Then, test: can infants distinguish words (tokibu) vs. part-words (bugiko)?
Word Segmentation Experiments

tokibugikobagopilatipolutokibugopilatipolutokibugikobagopilatipolutokibugikobagopila
tipolugikobatipolugopilatipolu
tokibugopilatipolutokibugopilatipolugikobatipolugopilatipolu
tokibugopilagikobatipolulutokibugikobagopilagikobatipolugikoba
tipolugikobatipolulutokibugikobagopilatipolugikobatokibugopila
Infants are exposed for 2 minutes to nonsense language (tokibu, gopila, gikoba, tipolu).

Only statistical cues to word boundaries

Then record how long they attend to novel sets of stimuli that either do or do not share some property with the familiarization data.

Discrimination between words and part-words (sequences spanning word boundaries)

If there's a difference, there has been some learning during familiarization.
Headturn Preference Procedure

Speech Segmentation
Infants show longer listening times for part-words.

Infants can extract information about sequential statistics of syllables (input contained no pauses, intonational patterns).
Humans can use statistical information to segment speech.

But all words were trisyllabic

So, transitional probabilities were either 1 or .33

Will this work if these are varied in a more naturalistic way?

Patricia Kuhl: The genius of babies
https://www.ted.com/talks/patricia_kuhl_the_linguistic_genius_of_babies
The use of transitional probabilities to do word segmentation ignores the fact that words are being learned at the same time.

There are statistical methods for speech segmentation that incorporate the learning of a lexicon as a sub-component.

Brent and Cartwright (1996): find the lexicon which minimizes the description of the observed data

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]
The MDL principle minimizes the length of words. Shorter words are more plausible.

- Minimizes the number of different words.
 - Try to make use of words you already know.
- Maximizes the probability of each word.
 - Words recur as often as possible.

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]
Brent and Cartwright (1996)

Input

- do you see the kitty
- see the kitty
- do you like the kitty
- do you like the kitty

Segmentation 1

- do you see the kitty
- see the kitty
- do you like the kitty

Lexicon 1

1. do
2. you
3. see
4. the
5. kitty

Derivation 1

1. 3
2. 5
3. 1
4. 2

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]

- \(\text{size(lexicon)} = \text{number of characters}\)
- \(\text{characters} = \text{letters and digits}\)
- \(\text{size(data-encoding)} = \text{number of characters in derivation}\)

Length: 25 + 10 = 35
Brent and Cartwright (1996)

Input

do you see the kitty
see the kitty
do you like the kitty

Segmentation 1

do you see the kitty
see the kitty
do you like the kitty

Lexicon 1
\begin{align*}
1 & \text{do} \\
2 & \text{the kitty} \\
3 & \text{you} \\
4 & \text{like} \\
5 & \text{see}
\end{align*}

Derivation 1
\begin{align*}
1 & 3 5 \\
2 & 5 2 \\
3 & 1 3 4 2
\end{align*}

Minimum Description Length
\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]
\[
\text{size(lexicon)} = \text{number of characters}
\]
\[
\text{characters} = \text{letters and digits}
\]
\[
\text{size(data-encoding)} = \text{number of characters in derivation}
\]

Length: 25 + 10 = 35
Brent and Cartwright (1996)

Input

doyouseeathetkitty
seethetkitty
doyoulikethetkitty

Segmentation 1

do you see thekitty
see thekitty
do you like thekitty

Lexicon 1

1 do 2 thekitty 3 you 4 like 5 see
Brent and Cartwright (1996)

Input
- do you see the kitty
- see the kitty
- do you like the kitty

Segmentation 1
- do you see the kitty
- see the kitty
- do you like the kitty

Lexicon 1
- 1 do 2 the kitty 3 you
- 4 like 5 see

Derivation 1
- 1 3 5 2
- 5 2
- 1 3 4 2

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]

\[
\text{size(lexicon)} = \text{number of characters}
\]

\[
\text{characters} = \text{letters and digits}
\]

\[
\text{size(data-encoding)} = \text{number of characters in derivation}
\]

Length: 25 + 10 = 35
Brent and Cartwright (1996)

Input

- do you see the kitty
- see the kitty
- do you like the kitty

Segmentation 1

- do you see the kitty
- see the kitty
- do you like the kitty

Lexicon 1

- 1 do 2 the kitty 3 you
- 4 like 5 see

Derivation 1

- 1 3 5 2
- 5 2
- 1 3 4 2

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]

size(lexicon) = number of characters
characters = letters and digits

size(data-encoding) = number of characters in derivation
Brent and Cartwright (1996)

Input

doyouseethekitty
seethekitty
doyoulikethekitty

Segmentation 1

do you see thekitty
see thekitty
do you like thekitty

Lexicon 1

1 do 2 thekitty 3 you
4 like 5 see

Derivation 1

1 3 5 2
5 2
1 3 4 2

Minimum Description Length

\[\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}\]

\[\text{size(lexicon)} = \text{number of characters}\]
\[\text{characters} = \text{letters and digits}\]

\[\text{size(data-encoding)} = \text{number of characters in derivation}\]

Length: \(25+10=35\)
Brent and Cartwright (1996)

Input

do you see the kitty
see the kitty
do you like the kitty

Segmentation 2

do you see the kitty
see the kitty
do you like the kitty

Lexicon 2

1 do 2 the 3 you
4 like 5 see 6 kitty

Derivation 2

1 3 5 2 6
5 2 6
1 3 4 2 6

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]

\[
\text{size(lexicon)} = \text{number of characters}
\]

\[
\text{characters} = \text{letters and digits}
\]

\[
\text{size(data-encoding)} = \text{number of characters in derivation}
\]
Input

do you see the kitty
see the kitty
do you like the kitty

Segmentation 2

do you see the kitty
see the kitty
do you like the kitty

Lexicon 2

1 do 2 the 3 you
4 like 5 see 6 kitty

Derivation 2

1 3 5 2 6
5 2 6
1 3 4 2 6

Minimum Description Length

\[
\text{size(description)} = \text{size(lexicon)} + \text{size(data-encoding)}
\]

size(lexicon) = number of characters
characters = letters and digits

size(data-encoding) = number of characters in derivation

Length: 26 + 13 = 39
MDL model is tested on (phonetically) transcribed speech from the CHILDES corpus.

An idealization of the raw acoustic signal.

Model searches for segmentation of the input with least MDL.

Search algorithm is not incremental; it reads in the entire input before segmenting any part of it.

Approach does not rely on language-specific input!

Computational simulations systematically explore hypothesis that distributional regularity is useful for word segmentation.
In order to acquire a lexicon young children segment speech into words using multiple sources of support; focused on distributional regularities.

- transitional probability provides cues
- verified by Saffran et al. (1996) experiments
- computational model of word segmentation
- based on Minimum Description Length Principle

Next lecture: word learning.