
Multilayer Perceptrons and Backpropagation
Informatics 1 CG: Lecture 6

Mirella Lapata

School of Informatics
University of Edinburgh
mlap@inf.ed.ac.uk

January 22, 2016

1 / 33

Reading:

Kevin Gurney’s Introduction to Neural Networks,
Chapters 5–6.5

2 / 33

Perceptrons

Connectionism is a computer modeling approach inspired by
neural networks.

Anatomy of a connectionist model: units, connections

The Perceptron as a linear classifier.

A learning algorithm for Perceptrons.

Key limitation: only works for linearly separable data.

3 / 33

Recap: Perceptrons

−1

w0

x1 w1

xnxn

wn

y
x =

∑n
i=0 wixi

0
0

1

4 / 33



Multilayer Perceptrons (MLPs)

Input layer

Hidden layer

Output layer

MLPs are feed-forward neural networks, organized in layers.
One input layer, one or more hidden layers, one output layer.
Each node in a layer connected to all other nodes in next layer.
Each connection has a weight (can be zero).

5 / 33

Activation Functions

x1

w1

x2 w2

xn

wn

y
Σ

0
h

1

Step function

0
xh

y

1

Outputs 0 or 1.

Sigmoid function

0
xh

y

1

Outputs a real value between 0 and 1.

6 / 33

Sigmoids

7 / 33

Learning with MLPs

Input layer

Hidden layer

Output layer

As with perceptrons, finding the right weights is very hard!
Solution technique: learning!
Learning: adjusting the weights based on training examples.

8 / 33



Supervised Learning

General Idea

1 Send the MLP an input pattern, x , from the training set.

2 Get the output from the MLP, y .

3 Compare y with the “right answer”, or target t, to get the
error quantity.

4 Use the error quantity to modify the weights, so next time y
will be closer to t.

5 Repeat with another x from the training set.

When updating weights after seeing x , the network doesn’t just
change the way it deals with x , but other inputs too . . .

Inputs it has not seen yet!

Generalization is the ability to deal accurately with unseen inputs.

9 / 33

Learning and Error Minimization

Recall: Perceptron Learning Rule

Minimize the difference between the actual and desired outputs:

wi ← wi + η(t − o)xi

Error Function: Mean Squared Error (MSE)

An error function represents such a difference over a set of inputs:

E (~w) =
1

2N

N∑
p=1

(tp − op)2

N is the number of patterns

tp is the target output for pattern p

op is the output obtained for pattern p

the 2 makes little difference, but makes life easier later on!

10 / 33

Gradient Descent

One technique that can be used
for minimizing functions is
gradient descent.

Can we use this on our error
function E?

We would like a learning rule
that tells us how to update
weights, like this:

w ′ij = wij + ∆wij

But what should ∆wij be?

11 / 33

Gradient and Derivatives: The Idea

The derivative is a measure of the rate of change of a
function, as its input changes;
For function y = f (x), the derivative dy

dx indicates how much
y changes in response to changes in x .
If x and y are real numbers, and if the graph of y is plotted
against x , the derivative measures the slope or gradient of the
line at each point, i.e., it describes the steepness or incline.

12 / 33



Gradient and Derivatives: The Idea

dy
dx > 0 implies that y increases as x increases. If we want to
find the minimum y , we should reduce x .
dy
dx < 0 implies that y decreases as x increases. If we want to
find the minimum y , we should increase x .
dy
dx = 0 implies that we are at a minimum or maximum or a
plateau. To get closer to the minimum:

xnew = xold − ηdy

dx
13 / 33

Gradient and Derivatives: The Idea

So, we know how to use derivatives to adjust one input value.

But we have several weights to adjust!

We need to use partial derivatives.

A partial derivative of a function of several variables is its
derivative with respect to one of those variables, with the
others held constant.

Example

If y = f (x1, x2), then we can have ∂y
∂x1

and ∂y
∂x2

.

In our learning rule case, if we can work out the partial derivatives,
we can use this rule to update the weights:

w ′ij = wij + ∆wij

where ∆wij = −η ∂E
∂wij

.

14 / 33

Summary So Far

We learnt what a multilayer perceptron is.

We know a learning rule for updating weights in order to
minimise the error:

w ′ij = wij + ∆wij

where ∆wij = −η ∂E
∂wij

∆wij tells us in which direction and how much we should
change each weight to roll down the slope (descend the
gradient) of the error function E .

So, how do we calculate ∂E
∂wij

?

15 / 33

Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

The mean squared error function E , which we want to minimize:

E (~w) =
1

2N

N∑
p=1

(tp − op)2

16 / 33



Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

If we use a sigmoid activation function f , then the output of
neuron i for pattern p is:

op
i = f (ui ) =

1

1 + e−aui

where a is a pre-defined constant and ui is the result of the input
function in neuron i :

ui =
∑

j

wijxij

17 / 33

Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

For the pth pattern and the ith neuron, we use gradient descent on
the error function:

∆wij = −η ∂Ep

∂wij
= η(tp

i − op
i )f ′(ui )xij

where f ′(ui ) = df
dui

is the derivative of f with respect to ui .
If f is the sigmoid function, f ′(ui ) = af (ui )(1− f (ui )).

18 / 33

Using Gradient Descent to Minimize the Error

∑
f

∑
f

wij

j

j

i

We can update weights after processing each pattern, using rule:

∆wij = η (tp
i − op

i ) f ′(ui ) xij

∆wij = η δpi xij

This is known as the generalized delta rule.
We need to use the derivative of the activation function f .
So, f must be differentiable! The threshold activation function
is not continuous, thus not differentiable!
Sigmoid has a derivative which is easy to calculate.

19 / 33

Updating Output vs Hidden Neurons

We can update output neurons using the generalize delta rule:

∆wij = η δpi xij

δpi = (tp
i − op

i )f ′(ui )

This δpi is only good for the output neurons, since it relies on
target outputs. But we don’t have target output for the hidden
nodes! What can we use instead?

δpi =
∑
k

wki δk f ′(ui )

This rule propagates error back from output nodes to hidden
nodes. If effect, it blames hidden nodes according to how much
influence they had. So, now we have rules for updating both
output and hidden neurons!

20 / 33



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

21 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

22 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

23 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

24 / 33



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

25 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

26 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

3 Calculate error for the output neurons.

27 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

3 Propagate backward error.

28 / 33



Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

3 Propagate backward error.

29 / 33

Backpropagation

illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

3 Propagate backward error.

30 / 33

Backpropagation
illustration:

1

2

Σ

Σ Σ

Σ

Σ

Σ

Σ Σ

1 Present the pattern at the input layer.

2 Propagate forward activations.

3 Propagate backward error.

4 Calculate ∂E
∂wij

5 Repate for all patterns and sum up.

31 / 33

Online Backpropagation

1: Initialize all weights to small random values.
2: repeat
3: for each training example do
4: Forward propagate the input features of the example

to determine the MLP’s outputs.
5: Back propagate error to generate ∆wij for all weights wij .
6: Update the weights using ∆wij .
7: end for
8: until stopping criteria reached.

32 / 33



Summary

We learnt what a multilayer perceptron is.

We have some intuition about using gradient descent on an
error function.

We know a learning rule for updating weights in order to
minimize the error: ∆wij = −η ∂E

∂wij

If we use the squared error, we get the generalized delta rule:
∆wij = ηδpi xij .

We know how to calculate δpi for output and hidden layers.

We can use this rule to learn an MLP’s weights using the
backpropagation algorithm.

Next lecture: a neural network model of the past tense.

33 / 33


