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Reading:

Steven Pinker’s Words and Rules, Chapter 2
Kevin Gurney’s Introduction to Neural Networks,
Chapters 2 and 4
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Recap: Words and Rules

Does the theory of words and rules explain the dichotomy
between regular and irregular verbs?

Is SPE a plausible theory of how the past tense is formed?

What does evidence from language development tell us about
regular and irregular verbs?

Maybe a rule is not necessary to explain the past tense.

Maybe children simply analogise from verbs they already know
(e.g., from correct forms like folded, molded, scolded to
over-regularisations like holded).

All-rules versus all-memory approach.
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A Single Neuron

Neuron receives inputs and combines these in the cell body.

If the input reaches a threshold, then the neuron may fire
(produce an output).

Some inputs are excitatory, while others are inhibitory.
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Biological Neural Networks

In biological neural networks, connections are synapses.
Input connection is conduit through which a member of a
network receives information (INPUT)
Output connection is a conduit through which a member of a
network sends information (OUTPUT).
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Connectionism

Connectionism is the name for a computer modeling approach
based on how information processing occurs in neural networks
(connectionist networks are called artificial neural networks).
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Anatomy of a Connectionist Model

Units are to a connectionist
model what neurons are to a
biological neural network —
the basic information process-
ing structures.

Biological neural networks are
organized in layers of neurons.
Connectionist models are orga-
nized in layers of units, not ran-
dom clusters.
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Anatomy of a Connectionist Model

But what you see here still isn’t a network. Something is missing.
Network connections are conduits through which information flows
between members of a network.

8 / 29



Anatomy of a Connectionist Model
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Anatomy of a Connectionist Model

Connections are represented with lines

Arrows in a connectionist model indicate the flow of
information from one unit to the next.

10 / 29

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be
considered as the simplest artificial neural network.
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Input function:

u(x) =
n∑

i=1
wixi

Activation function: threshold

y = f (u(x)) =

{
1, if u(x) > θ

0, otherwise

Activation state:
0 or 1 (-1 or 1)
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Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be
considered as the simplest artificial neural network.
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Inputs are in the range [0, 1], where 0 is “off” and 1 is “on”.

Weights can be any real number (positive or negative).
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Perceptrons for Logic

Perceptron for AND
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Perceptrons for Logic

Perceptron for AND
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Perceptrons for Logic

Perceptron for OR
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Perceptrons for Logic

Perceptron for XOR
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XOR is an exclusive OR because it only returns a true value of 1 if
the two values are exclusive, i.e., they are both different.
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Perceptrons for Logic

Perceptron for XOR
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Perceptrons for Logic

Perceptron for XOR
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Perceptrons as Classifiers

Perceptrons are linear classifiers, i.e., they can only separate points
with a hyperplane (a straight line).
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The XOR probem again

20 / 29



What is the Perceptron Really Seeing?

Sequence of exemplars presented to the Perceptron:

N input x target t output o

1 (0,1,0,0) 1 0
2 (1,0,0,0) 0 0
3 (0,1,1,1) 0 1
4 (1,0,1,0) 0 1
5 (1,1,1,1) 1 0
6 (0,1,0,0) 1 1
. . . . . . . . . . . .

The above Perceptron has 4 inputs (binary) ≈ feature vector
representing each exemplar.

The Perceptron sees 6 exemplars or training items

We know what the right answer is ≈ target

What would happen if we used random weights/threshold?
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Learning

Q1: But... choosing weights and threshold θ for the perceptron
is not easy! How to learn the weights and threshold from
examples?

A1: We can use a learning algorithm that adjusts the weights
and threshold based on examples.

http://www.youtube.com/watch?v=vGwemZhPlsA&feature=youtu.be
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Learning: A trick to learn θ

n∑
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wixi > θ

n∑
i=1
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w1x1 + w2x2 + . . .wnxn − θ > 0

w1x1 + w2x2 + . . .wnxn + θ(−1) > 0
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Learning: A trick to learn θ
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We can consider θ as a weight to be learnt!
The input is fixed as -1. The activation function is then:

y = f (u(x)) =

{
1, if u(x) > 0

0, otherwise
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Learning Rule

Learning happens by adjusting weights. The threshold can be
considered as a weight.

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

η, 0 < η ≤ 1 is a constant called learning rate.

t is the target output of the current example.

o is the output obtained by the Perceptron.
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Learning Rule

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

o = 1 and t = 1 ∆wi = η(t − o)xi = η(1− 1)xi = 0
o = 0 and t = 1 ∆wi = η(t − o)xi = η(1− 0)xi = ηxi

Learning rate η is positive; controls how big changes ∆wi are.

If xi > 0, ∆wi > 0. Then wi increases in an attempt to make
wixi become larger than θ.

If xi < 0, ∆wi < 0. Then wi reduces.
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Learning Rule: Exercise

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a Perceptron with only one input x1, weight w1 = 0.5,
threshold θ = 0 and learning rate η = 0.6. Consider also the
training example {x1 = −1, t = 1}. For now, let’s temporarily
ignore the learning of the threshold and consider it fixed.

Determine the output of the Perceptron for the input −1:
w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0
The new weight w1 after applying the learning rule:
∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1
The new output of the Perceptron for the input -1:
w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1
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Learning Algorithm

1: Initialize all weights randomly.
2: repeat
3: for each training example do
4: Apply the learning rule.
5: end for
6: until the error is acceptable or a certain number

of iterations is reached

This algorithm is guaranteed to find a solution with zero error in a
limited number of iterations as long as the examples are linearly
separable.
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Summary

What does this have to do with the words versus rules debate?

Connectionism is a computer modeling approach inspired by
neural networks.

Anatomy of a connectionist model: units, connections

The Perceptron as a linear classifier.

A learning algorithm for Perceptrons

Next lecture: multilayer perceptrons (neural networks).
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