Recap: Words and Rules

- Does the theory of words and rules explain the dichotomy between regular and irregular verbs?
- Is SPE a plausible theory of how the past tense is formed?
- What does evidence from language development tell us about regular and irregular verbs?
- Maybe a rule is not necessary to explain the past tense.
- Maybe children simply analogise from verbs they already know (e.g., from correct forms like folded, molded, scolded to over-regularisations like holded).
- All-rules versus all-memory approach.

A Single Neuron

- Neuron receives inputs and combines these in the cell body.
- If the input reaches a threshold, then the neuron may fire (produce an output).
- Some inputs are excitatory, while others are inhibitory.
Biological Neural Networks

- In biological neural networks, connections are synapses.
- **Input connection** is conduit through which a member of a network **receives** information (INPUT).
- **Output connection** is a conduit through which a member of a network **sends** information (OUTPUT).

Connectionism

Connectionism is the name for a **computer modeling** approach based on how information processing occurs in neural networks (connectionist networks are called **artificial neural networks**).

Anatomy of a Connectionist Model

Units are to a connectionist model what neurons are to a biological neural network — the basic information processing structures.

Biological neural networks are organized in **layers of neurons**. Connectionist models are organized in layers of units, not random clusters.

But what you see here still isn’t a network. Something is missing. **Network connections** are conduits through which information flows between members of a network.
Anatomy of a Connectionist Model

Connections are represented with lines. Arrows in a connectionist model indicate the flow of information from one unit to the next.

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

\[u(x) = \sum_{i=1}^{n} w_i x_i \]

\[y = f(u(x)) = \begin{cases} 1, & \text{if } u(x) > \theta \\ 0, & \text{otherwise} \end{cases} \]

Activation state: 0 or 1 (-1 or 1)

Inputs are in the range [0, 1], where 0 is “off” and 1 is “on”.

Weights can be any real number (positive or negative).
Perceptrons for Logic

Perceptron for AND

- **Function:** \(f(x_1, x_2) = \begin{cases} 1 & \text{if } \sum x_i \geq \theta \text{ then } 1 \text{ else } 0 \\ 0 & \text{otherwise} \end{cases} \)
- **Example:**
 \[
 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5
 \]

Perceptron for OR

- **Function:** \(f(x_1, x_2) = \begin{cases} 1 & \text{if } \sum x_i \geq \theta \text{ then } 1 \text{ else } 0 \\ 0 & \text{otherwise} \end{cases} \)
- **Example:**
 \[
 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5
 \]

Perceptron for XOR

- **Function:** \(f(x_1, x_2) = \begin{cases} 1 & \text{if } \sum x_i \geq \theta \text{ then } 1 \text{ else } 0 \\ 0 & \text{otherwise} \end{cases} \)
- **Example:**
 \[
 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5
 \]

 XOR is an exclusive OR because it only returns a true value of 1 if the two values are exclusive, i.e., they are both different.
Perceptrons for Logic

Perceptron for XOR

- **Symbolic Representation:**

 \[
 f(x_1, x_2) = \begin{cases}
 1 & \text{if } \sum x_i \geq \theta \\
 0 & \text{else}
 \end{cases}
 \]

 where \(x_1, x_2 \) are the inputs, \(\theta \) is the threshold.

- **Example Calculation:**

 \[
 0 \cdot 0.5 + 0 \cdot 0.5 = 0
 \]

Perceptrons as Classifiers

Perceptrons are **linear classifiers**, i.e., they can only separate points with a **hyperplane** (a straight line).

What is the Perceptron Really Seeing?

Sequence of exemplars presented to the Perceptron:

<table>
<thead>
<tr>
<th>N</th>
<th>input (x)</th>
<th>target (t)</th>
<th>output (o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,1,0,0)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(1,0,0,0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(0,1,1,1)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(1,0,1,0)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(1,1,1,1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(0,1,0,0)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The above Perceptron has 4 inputs (binary) \(\approx \) feature vector representing each exemplar.
- The Perceptron see 6 exemplars or training items.
- We know what the right answer is \(\approx \) output.
- What would happen if we used random weights/threshold?
Learning

Q1: But... choosing weights and threshold θ for the perceptron is not easy! How to learn the weights and threshold from examples?

A1: We can use a learning algorithm that adjusts the weights and threshold based on examples.

http://www.youtube.com/watch?v=vGwemZhPlsA&feature=youtu.be

Learning Rule

Learning happens by adjusting weights. The threshold can be considered as a weight.

Perceptron’s Learning Rule

\[w_i \leftarrow w_i + \Delta w_i \]
\[\Delta w_i = \eta (t - o)x_i \]

- $\eta, 0 < \eta \leq 1$ is a constant called learning rate.
- t is the target output of the current example.
- o is the output obtained by the Perceptron.
Learning Rule

Perceptron's Learning Rule

\[w_i \leftarrow w_i + \Delta w_i \]

\[\Delta w_i = \eta(t - o)x_i \]

- \(o = 1 \) and \(t = 1 \) \(\Delta w_i = \eta(t - o)x_i = \eta(1 - 1)x_i = 0 \)
- \(o = 0 \) and \(t = 1 \) \(\Delta w_i = \eta(t - o)x_i = \eta(1 - 0)x_i = \eta x_i \)

- Learning rate \(\eta \) is positive; controls how big changes \(\Delta w_i \) are.
- If \(x_i > 0 \), \(\Delta w_i > 0 \). Then \(w_i \) increases in an attempt to make \(w_i x_i \) become larger than \(\theta \).
- If \(x_i < 0 \), \(\Delta w_i < 0 \). Then \(w_i \) reduces.

Learning Algorithm

1. Initialize all weights randomly.
2. repeat
3. for each training example do
 4. Apply the learning rule.
5. end for
6. until the error is acceptable or a certain number of iterations is reached

This algorithm is guaranteed to find a solution with error zero in a limited number of iterations as long as the examples are linearly separable.

Summary

- What does this have to do with the words versus rules debate?
 - Connectionism is a computer modeling approach inspired by neural networks.
 - Anatomy of a connectionist model: units, connections
 - The Perceptron as a linear classifier.
 - A learning algorithm for Perceptrons

Next lecture: multilayer perceptrons (neural networks).

Learning Rule: Exercise

Perceptron's Learning Rule

\[w_i \leftarrow w_i + \Delta w_i \]

\[\Delta w_i = \eta(t - o)x_i \]

Consider a Perceptron with only one input \(x_1 \), weight \(w_1 = 0.5 \), threshold \(\theta = 0 \) and learning rate \(\eta = 0.6 \). Consider also the training example \(\{ x_1 = -1, t = 1 \} \). For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1:
 \(w_1x_1 = 0.5(-1) = -0.5 \leq \theta \rightarrow o = 0 \)
- The new weight \(w_1 \) after applying the learning rule:
 \(\Delta w_1 = 0.6(1 - 0)(-1) = -0.6 \rightarrow w_1 = 0.6 - 0.6 = -0.1 \)
- The new output of the Perceptron for the input -1:
 \(w_1x_1 = -0.1(-1) = 0.1 \geq \theta \rightarrow o = 1 \)