
Perceptrons
Informatics 1 CG: Lecture 5

Mirella Lapata

School of Informatics
University of Edinburgh
mlap@inf.ed.ac.uk

21 January, 2016

1 / 29

Reading:

Steven Pinker’s Words and Rules, Chapter 2
Kevin Gurney’s Introduction to Neural Networks,
Chapters 2 and 4

2 / 29

Recap: Words and Rules

Does the theory of words and rules explain the dichotomy
between regular and irregular verbs?

Is SPE a plausible theory of how the past tense is formed?

What does evidence from language development tell us about
regular and irregular verbs?

Maybe a rule is not necessary to explain the past tense.

Maybe children simply analogise from verbs they already know
(e.g., from correct forms like folded, molded, scolded to
over-regularisations like holded).

All-rules versus all-memory approach.

3 / 29

A Single Neuron

Neuron receives inputs and combines these in the cell body.

If the input reaches a threshold, then the neuron may fire
(produce an output).

Some inputs are excitatory, while others are inhibitory.

4 / 29

Biological Neural Networks

In biological neural networks, connections are synapses.
Input connection is conduit through which a member of a
network receives information (INPUT)
Output connection is a conduit through which a member of a
network sends information (OUTPUT).

5 / 29

Connectionism

Connectionism is the name for a computer modeling approach
based on how information processing occurs in neural networks
(connectionist networks are called artificial neural networks).

6 / 29

Anatomy of a Connectionist Model

Units are to a connectionist
model what neurons are to a
biological neural network —
the basic information process-
ing structures.

Biological neural networks are
organized in layers of neurons.
Connectionist models are orga-
nized in layers of units, not ran-
dom clusters.

7 / 29

Anatomy of a Connectionist Model

But what you see here still isn’t a network. Something is missing.
Network connections are conduits through which information flows
between members of a network.

8 / 29

Anatomy of a Connectionist Model

9 / 29

Anatomy of a Connectionist Model

Connections are represented with lines

Arrows in a connectionist model indicate the flow of
information from one unit to the next.

10 / 29

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be
considered as the simplest artificial neural network.

∑
f

x1

x2

. . .

xn

y

w1

w2

. . .

wn

Input function:

u(x) =
n∑

i=1
wixi

Activation function: threshold

y = f (u(x)) =

{
1, if u(x) > θ

0, otherwise

Activation state:
0 or 1 (-1 or 1)

11 / 29

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be
considered as the simplest artificial neural network.

∑
f

x1

x2

. . .

xn

y

w1

w2

. . .

wn

Inputs are in the range [0, 1], where 0 is “off” and 1 is “on”.

Weights can be any real number (positive or negative).

12 / 29

Perceptrons for Logic

Perceptron for AND

1

0

1 f if
∑ ≥ θ then 1 else 0

0 · 0.5 + 1 · 0.5 = 0.5

0

0.5

0.5

x1 x2 x1 AND x2

0 0 0
0 1 0
1 0 0
1 1 1

13 / 29

Perceptrons for Logic

Perceptron for AND

1

1

1 f if
∑ ≥ θ then 1 else 0

1 · 0.5 + 1 · 0.5 = 1

1

0.5

0.5

x1 x2 x1 AND x2

0 0 0
0 1 0
1 0 0
1 1 1

14 / 29

Perceptrons for Logic

Perceptron for OR

0.5

0

1 f if
∑ ≥ θ then 1 else 0

0 · 0.5 + 1 · 0.5 = 0.5

1

0.5

0.5

x1 x2 x1 OR x2

0 0 0
0 1 1
1 0 1
1 1 1

15 / 29

Perceptrons for Logic

Perceptron for XOR

0.5

0

1 f if
∑ ≥ θ then 1 else 0

0 · 0.5 + 1 · 0.5 = 0.5

1

0.5

0.5

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

XOR is an exclusive OR because it only returns a true value of 1 if
the two values are exclusive, i.e., they are both different.

16 / 29

Perceptrons for Logic

Perceptron for XOR

0.5

0

0 f if
∑ ≥ θ then 1 else 0

0 · 0.5 + 0 · 0.5 = 0

0

0.5

0.5

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

17 / 29

Perceptrons for Logic

Perceptron for XOR

0.5

1

1 f if
∑ ≥ θ then 1 else 0

1 · 0.5 + 1 · 0.5 = 1

??

0.5

0.5

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

18 / 29

Perceptrons as Classifiers

Perceptrons are linear classifiers, i.e., they can only separate points
with a hyperplane (a straight line).

> J*)#05*#8)*8")06"7?#0!%0#+"%&7#%#7$%00")#89*0#46B67639"#3<#%#70)%6'!0#96&"

>

H K&#)"%9#96("?#0!6&'7#%)"#)%)"9<#0!67#&"%0 19 / 29

The XOR probem again

20 / 29

What is the Perceptron Really Seeing?

Sequence of exemplars presented to the Perceptron:

N input x target t output o

1 (0,1,0,0) 1 0
2 (1,0,0,0) 0 0
3 (0,1,1,1) 0 1
4 (1,0,1,0) 0 1
5 (1,1,1,1) 1 0
6 (0,1,0,0) 1 1
.

The above Perceptron has 4 inputs (binary) ≈ feature vector
representing each exemplar.

The Perceptron sees 6 exemplars or training items

We know what the right answer is ≈ target

What would happen if we used random weights/threshold?

21 / 29

Learning

Q1: But... choosing weights and threshold θ for the perceptron
is not easy! How to learn the weights and threshold from
examples?

A1: We can use a learning algorithm that adjusts the weights
and threshold based on examples.

http://www.youtube.com/watch?v=vGwemZhPlsA&feature=youtu.be

22 / 29

Learning: A trick to learn θ

n∑
i=1

wixi > θ

n∑
i=1

wixi − θ > 0

∑
f

x0 = −1

x1

x2

. . .

xn

y

w0 = θ
w1

w2

. . .

wn

w1x1 + w2x2 + . . .wnxn − θ > 0

w1x1 + w2x2 + . . .wnxn + θ(−1) > 0

23 / 29

Learning: A trick to learn θ

∑
f

x0 = −1

x1

x2

. . .

xn

y

w0 = θ
w1

w2

. . .

wn

We can consider θ as a weight to be learnt!
The input is fixed as -1. The activation function is then:

y = f (u(x)) =

{
1, if u(x) > 0

0, otherwise
24 / 29

Learning Rule

Learning happens by adjusting weights. The threshold can be
considered as a weight.

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

η, 0 < η ≤ 1 is a constant called learning rate.

t is the target output of the current example.

o is the output obtained by the Perceptron.

25 / 29

Learning Rule

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

o = 1 and t = 1 ∆wi = η(t − o)xi = η(1− 1)xi = 0
o = 0 and t = 1 ∆wi = η(t − o)xi = η(1− 0)xi = ηxi

Learning rate η is positive; controls how big changes ∆wi are.

If xi > 0, ∆wi > 0. Then wi increases in an attempt to make
wixi become larger than θ.

If xi < 0, ∆wi < 0. Then wi reduces.

26 / 29

Learning Rule: Exercise

Perceptron’s Learning Rule

wi ← wi + ∆wi

∆wi = η(t − o)xi

Consider a Perceptron with only one input x1, weight w1 = 0.5,
threshold θ = 0 and learning rate η = 0.6. Consider also the
training example {x1 = −1, t = 1}. For now, let’s temporarily
ignore the learning of the threshold and consider it fixed.

Determine the output of the Perceptron for the input −1:
w1x1 = 0.5(−1) = −0.5 ≤ θ → o = 0
The new weight w1 after applying the learning rule:
∆w1 = 0.6(1− 0)(−1) = −0.6→ w1 = 0.5− 0.6 = −0.1
The new output of the Perceptron for the input -1:
w1x1 = −0.1(−1) = 0.1 ≥ θ → o = 1

27 / 29

Learning Algorithm

1: Initialize all weights randomly.
2: repeat
3: for each training example do
4: Apply the learning rule.
5: end for
6: until the error is acceptable or a certain number

of iterations is reached

This algorithm is guaranteed to find a solution with zero error in a
limited number of iterations as long as the examples are linearly
separable.

28 / 29

Summary

What does this have to do with the words versus rules debate?

Connectionism is a computer modeling approach inspired by
neural networks.

Anatomy of a connectionist model: units, connections

The Perceptron as a linear classifier.

A learning algorithm for Perceptrons

Next lecture: multilayer perceptrons (neural networks).

29 / 29

