Perceptrons

Informatics 1 CG: Lecture 5

Mirella Lapata

School of Informatics
University of Edinburgh
mlap@inf.ed.ac.uk

21 January, 2016

Reading:
Steven Pinker's Words and Rules, Chapter 2 Kevin Gurney's Introduction to Neural Networks, Chapters 2 and 4

Recap: Words and Rules

- Does the theory of words and rules explain the dichotomy between regular and irregular verbs?
- Is SPE a plausible theory of how the past tense is formed?
- What does evidence from language development tell us about regular and irregular verbs?
- Maybe a rule is not necessary to explain the past tense.
- Maybe children simply analogise from verbs they already know (e.g., from correct forms like folded, molded, scolded to over-regularisations like holded).
- All-rules versus all-memory approach.

A Single Neuron

Structure of a Typical Neuron

- Neuron receives inputs and combines these in the cell body.
- If the input reaches a threshold, then the neuron may fire (produce an output).
- Some inputs are excitatory, while others are inhibitory.

Biological Neural Networks

- In biological neural networks, connections are synapses.
- Input connection is conduit through which a member of a network receives information (INPUT)
- Output connection is a conduit through which a member of a network sends information (OUTPUT).

Connectionism

Connectionism is the name for a computer modeling approach based on how information processing occurs in neural networks (connectionist networks are called artificial neural networks).

Anatomy of a Connectionist Model

Units are to a connectionist model what neurons are to a biological neural network the basic information process${ }^{\circ} \mathrm{F}$ ing structures.

Anatomy of a Connectionist Model

Units are to a connectionist model what neurons are to a biological neural network the basic information process$\bigcirc\} u n i t$ ing structures.

Biological neural networks are organized in layers of neurons. Connectionist models are organized in layers of units, not random clusters.

Anatomy of a Connectionist Model

But what you see here still isn't a network. Something is missing.

Anatomy of a Connectionist Model

But what you see here still isn't a network. Something is missing. Network connections are conduits through which information flows between members of a network.

Anatomy of a Connectionist Model

Anatomy of a Connectionist Model

- Connections are represented with lines
- Arrows in a connectionist model indicate the flow of information from one unit to the next.

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

Input function:
$u(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}$

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

Input function:
$u(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}$
Activation function: threshold

$$
y=f(u(\mathbf{x}))= \begin{cases}1, & \text { if } u(\mathbf{x})>\theta \\ 0, & \text { otherwise }\end{cases}
$$

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

Input function:
$u(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}$

Activation function: threshold
$y=f(u(\mathbf{x}))= \begin{cases}1, & \text { if } u(\mathbf{x})>\theta \\ 0, & \text { otherwise }\end{cases}$

Activation state: 0 or 1 (-1 or 1)

Perceptron: An Artificial Neuron

Perceptron was developed by Frank Rosenblatt in 1957 and can be considered as the simplest artificial neural network.

- Inputs are in the range $[0,1]$, where 0 is "off" and 1 is "on".
- Weights can be any real number (positive or negative).

Perceptrons for Logic

Perceptron for AND

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

0

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

0

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

$0 \cdot 0.5+1 \cdot 0.5=0.5$

Perceptrons for Logic

Perceptron for AND

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

0.5
 f if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

1
0.5
$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

1
0.5

1 f if $\sum \geq \theta$ then 1 else 0
$1 \cdot 0.5+1 \cdot 0.5=1$

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for AND

1
0.5
$1 f$ if $\sum \geq \theta$ then 1 else 0
$1 \cdot 0.5+1 \cdot 0.5=1$

x_{1}	x_{2}	x_{1} AND x_{2}
0	0	0
0	1	0
1	0	0
1	1	1

Perceptrons for Logic

Perceptron for OR

x_{1}	x_{2}	x_{1} OR x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

Perceptrons for Logic

Perceptron for OR

0
$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} OR x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

Perceptrons for Logic

Perceptron for OR

0

$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} OR x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

$0 \cdot 0.5+1 \cdot 0.5=0.5$

Perceptrons for Logic

Perceptron for OR

0

$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} OR x_{2}
0	0	0
0	1	1
1	0	1
1	1	1

$0 \cdot 0.5+1 \cdot 0.5=0.5$

Perceptron for XOR

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

XOR is an exclusive OR because it only returns a true value of 1 if the two values are exclusive, i.e., they are both different.

Perceptrons for Logic

Perceptron for XOR

0
 $1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

XOR is an exclusive OR because it only returns a true value of 1 if the two values are exclusive, i.e., they are both different.

Perceptrons for Logic

Perceptron for XOR
0
$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

$0 \cdot 0.5+1 \cdot 0.5=0.5$

XOR is an exclusive OR because it only returns a true value of 1 if the two values are exclusive, i.e., they are both different.

Perceptrons for Logic

Perceptron for XOR
0
$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

$0 \cdot 0.5+1 \cdot 0.5=0.5$

XOR is an exclusive OR because it only returns a true value of 1 if the two values are exclusive, i.e., they are both different.

Perceptrons for Logic

Perceptron for XOR

0
0.5
$0 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons for Logic

Perceptron for XOR

0

$0 f$ if $\sum \geq \theta$ then 1 else 0
$0 \cdot 0.5+0 \cdot 0.5=0$

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons for Logic

Perceptron for XOR

0

$0 f$ if $\sum \geq \theta$ then 1 else 0
$0 \cdot 0.5+0 \cdot 0.5=0$

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons for Logic

Perceptron for XOR

1
0.5
$1 f$ if $\sum \geq \theta$ then 1 else 0

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons for Logic

Perceptron for XOR
1
0.5
$1 f$ if $\sum \geq \theta$ then 1 else 0
$1 \cdot 0.5+1 \cdot 0.5=1$

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons for Logic

Perceptron for XOR

$$
\begin{aligned}
& 1+0.5 \\
& 1 \cdot 0.5+1 \cdot 0.5=1
\end{aligned}
$$

x_{1}	x_{2}	x_{1} XOR x_{2}
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrons as Classifiers

Perceptrons are linear classifiers, i.e., they can only separate points with a hyperplane (a straight line).

Multidimensional, irrelevant variation

Multidimensional

Dimension 1

The XOR probem again

What is the Perceptron Really Seeing?

Sequence of exemplars presented to the Perceptron:

N	input x	target t
1	$(0,1,0,0)$	1
2	$(1,0,0,0)$	0
3	$(0,1,1,1)$	0
4	$(1,0,1,0)$	0
5	$(1,1,1,1)$	1
6	$(0,1,0,0)$	1
\cdots	\cdots	\cdots

- The above Perceptron has 4 inputs (binary) \approx feature vector representing each exemplar.
- The Perceptron sees 6 exemplars or training items
- We know what the right answer is \approx target
- What would happen if we used random weights/threshold?

What is the Perceptron Really Seeing?

Sequence of exemplars presented to the Perceptron:

N	input x	target t	output 0
1	$(0,1,0,0)$	1	0
2	$(1,0,0,0)$	0	0
3	$(0,1,1,1)$	0	1
4	$(1,0,1,0)$	0	1
5	$(1,1,1,1)$	1	0
6	$(0,1,0,0)$	1	1
\cdots	\cdots	\cdots	\cdots

- The above Perceptron has 4 inputs (binary) \approx feature vector representing each exemplar.
- The Perceptron sees 6 exemplars or training items
- We know what the right answer is \approx target
- What would happen if we used random weights/threshold?

Learning

\mathbf{Q}_{1} : But... choosing weights and threshold θ for the perceptron is not easy! How to learn the weights and threshold from examples?
\mathbf{A}_{1} : We can use a learning algorithm that adjusts the weights and threshold based on examples.
http://www. youtube.com/watch?v=vGwemZhPlsA\&feature=youtu.be

Learning: A trick to learn θ

$$
\sum_{i=1}^{n} w_{i} x_{i}>\theta
$$

Learning: A trick to learn θ

$$
\begin{gathered}
\sum_{i=1}^{n} w_{i} x_{i}>\theta \\
\sum_{i=1}^{n} w_{i} x_{i}-\theta>0
\end{gathered}
$$

Learning: A trick to learn θ

$$
\begin{gathered}
\sum_{i=1}^{n} w_{i} x_{i}>\theta \\
\sum_{i=1}^{n} w_{i} x_{i}-\theta>0
\end{gathered}
$$

$$
w_{1} x_{1}+w_{2} x_{2}+\ldots w_{n} x_{n}-\theta>0
$$

Learning: A trick to learn θ

$$
\begin{gathered}
\sum_{i=1}^{n} w_{i} x_{i}>\theta \\
\sum_{i=1}^{n} w_{i} x_{i}-\theta>0
\end{gathered}
$$

$$
\begin{aligned}
& w_{1} x_{1}+w_{2} x_{2}+\ldots w_{n} x_{n}-\theta>0 \\
& w_{1} x_{1}+w_{2} x_{2}+\ldots w_{n} x_{n}+\theta(-1)>0
\end{aligned}
$$

Learning: A trick to learn θ

$w_{1} x_{1}+w_{2} x_{2}+\ldots w_{n} x_{n}-\theta>0$
$w_{1} x_{1}+w_{2} x_{2}+\ldots w_{n} x_{n}+\theta(-1)>0$

Learning: A trick to learn θ

- We can consider θ as a weight to be learnt!
- The input is fixed as -1 . The activation function is then:

$$
y=f(u(\mathbf{x}))= \begin{cases}1, & \text { if } u(\mathbf{x})>0 \\ 0, & \text { otherwise }\end{cases}
$$

Learning Rule

Learning happens by adjusting weights. The threshold can be considered as a weight.

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

- $\eta, 0<\eta \leq 1$ is a constant called learning rate.
- t is the target output of the current example.
- o is the output obtained by the Perceptron.

Learning Rule

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

$$
\begin{aligned}
& o=1 \text { and } t=1 \\
& o=0 \text { and } t=1
\end{aligned}
$$

- Learning rate η is positive; controls how big changes Δw_{i} are.
- If $x_{i}>0, \Delta w_{i}>0$. Then w_{i} increases in an attempt to make $w_{i} x_{i}$ become larger than θ.
- If $x_{i}<0, \Delta w_{i}<0$. Then w_{i} reduces.

Learning Rule

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

$$
\begin{array}{ll}
o=1 \text { and } t=1 & \Delta w_{i}=\eta(t-o) x_{i}=\eta(1-1) x_{i}=0 \\
o=0 \text { and } t=1 & \Delta w_{i}=\eta(t-o) x_{i}=\eta(1-0) x_{i}=\eta x_{i}
\end{array}
$$

- Learning rate η is positive; controls how big changes Δw_{i} are.
- If $x_{i}>0, \Delta w_{i}>0$. Then w_{i} increases in an attempt to make $w_{i} x_{i}$ become larger than θ.
- If $x_{i}<0, \Delta w_{i}<0$. Then w_{i} reduces.

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1 :

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1 :

$$
w_{1} x_{1}=0.5(-1)=-0.5 \leq \theta \rightarrow 0=0
$$

- The new weight w_{1} after applying the learning rule:

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1 :

$$
w_{1} x_{1}=0.5(-1)=-0.5 \leq \theta \rightarrow 0=0
$$

- The new weight w_{1} after applying the learning rule:

$$
\Delta w_{1}=0.6(1-0)(-1)=-0.6 \rightarrow w_{1}=0.5-0.6=-0.1
$$

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1 :

$$
w_{1} x_{1}=0.5(-1)=-0.5 \leq \theta \rightarrow 0=0
$$

- The new weight w_{1} after applying the learning rule:

$$
\Delta w_{1}=0.6(1-0)(-1)=-0.6 \rightarrow w_{1}=0.5-0.6=-0.1
$$

- The new output of the Perceptron for the input -1 :

Learning Rule: Exercise

Perceptron's Learning Rule

$$
\begin{gathered}
w_{i} \leftarrow w_{i}+\Delta w_{i} \\
\Delta w_{i}=\eta(t-o) x_{i}
\end{gathered}
$$

Consider a Perceptron with only one input x_{1}, weight $w_{1}=0.5$, threshold $\theta=0$ and learning rate $\eta=0.6$. Consider also the training example $\left\{x_{1}=-1, t=1\right\}$. For now, let's temporarily ignore the learning of the threshold and consider it fixed.

- Determine the output of the Perceptron for the input -1 :

$$
w_{1} x_{1}=0.5(-1)=-0.5 \leq \theta \rightarrow 0=0
$$

- The new weight w_{1} after applying the learning rule:

$$
\Delta w_{1}=0.6(1-0)(-1)=-0.6 \rightarrow w_{1}=0.5-0.6=-0.1
$$

- The new output of the Perceptron for the input -1 :

$$
w_{1} x_{1}=-0.1(-1)=0.1 \geq \theta \rightarrow o=1
$$

Learning Algorithm

```
1: Initialize all weights randomly.
2: repeat
3: for each training example do
4: Apply the learning rule.
5: end for
6: until the error is acceptable or a certain number
of iterations is reached
```

This algorithm is guaranteed to find a solution with zero error in a limited number of iterations as long as the examples are linearly separable.

What does this have to do with the words versus rules debate?

- Connectionism is a computer modeling approach inspired by neural networks.
- Anatomy of a connectionist model: units, connections
- The Perceptron as a linear classifier.
- A learning algorithm for Perceptrons

Next lecture: multilayer perceptrons (neural networks).

