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Hello!

● Informal lab / lecture session
● Assumes no prior programming experience
● Two hours, with a 10 minute break
● One-third talking and two-thirds practical work
● Feel free to ask us questions, at any time
● Feel free to help each other and discuss the 

exercises
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Purpose

● This is an introduction to MATLAB
● This will help you get familiar with MATLAB and 

some general computer programming concepts
● Exploration is encouraged – try the examples 

given, and anything else that occurs to you!
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Failure

● Computer programming involves lots of failure
● Usually you have to fail several times to 

succeed once
● This is ok and happens to everyone
● Most of the time there will be an error message, 

which will give you a clue to the solution for the 
problem
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Keyboard practicalities

● Go to System Preferences -> Language and 
Region

● Choose Keyboard Preferences
● Click on +, and add “British-PC”
● Close this window
● At the top-right of the screen, click on the flag 

and make sure “British-PC” is selected
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Even so ....

● One key is transposed on some machines!
● This is the key with:

● It's swapped with the very top-left key, which is 
next to 1

|
\
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MATLAB

● Open MATLAB (in Applications -> Science)
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The MATLAB prompt

● From now on, whenever you see this:

>>

it indicates something that you can type in to 
MATLAB

● Some of the things you type in will produce 
error messages

● Some of the things I tell you to type in will 
produce error messages
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Saying hello to MATLAB

● Try this:

>> 'hello'
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MATLAB as a calculator

>> 2+2
>> 2-20
>> 6*3
>> 1/10
>> 10^3
>> (2*3)+4
>> 2*(3+4)
>> 2*3+4
>> 2.5/1000000
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Numbers

● This last answer is in “floating point” notation

2.5e-4 = 2.5 x 10-4

           = 2.5 x 0.0001

           = 0.00025
● Try these:

>> 8e3
>> 4.5e2
>> 1e1
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Numbers

● There are also some “special” values you might 
see. MATLAB still regards these as numbers. 
For example:

>> 1/0
● You may also see:

– NaN (“Not a Number”)
– i (or j) for the square root of -1
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Variables

● We can create a variable using =

>> my_number = 3
● A variable is like a box for a value
● The variable name is the label on the box
● MATLAB will remember the value we give:

>> my_number

3
my_number
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Variables

● You can use a variable with a number in it 
wherever you would use a number

>> my_number + 5
● You can put the result of such a calculation into 

another variable

>> another_number = my_number + 5
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Variables

>> a=3
>> a
>> b=14
>> a+b
>> you_can_use_long_names = 5000
>> d = a + 20
>> i_dont_exist
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Variables

● What can you use as a variable name?

>> a = 12
>> A = 0.7
>> 1number = 43
>> _things = 10
>> word count = 20
>> end = -40000
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Variable names

● Variable names must start with a letter, and can 
contain letters, numbers and underscores

● Names are case sensitive
● They can't contain spaces, so what if you want 

to have multiple words in your variable name?

>> numberofthings = 12
>> numberOfThings = 12
>> number_of_things = 12
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More variables

● There are other kinds of values in MATLAB, for 
example, text:

>> some_text = 'a line of text'
>> text2 = ' and some more text'
>> text3 = strcat(some_text, text2)

● or true/false values
>> is_ready = true
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Types

● These different kinds of values are referred to 
as types

● Numbers – floating point

0 -1200 5.0e20 0.0001 Inf NaN
● Text – string

'hello'  '1000'  'this is a text'
● True or False – Boolean or logical

true (1), false (0)
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Different ways to get results

● Functions and operators

Values

>> 2+2

Operator

Values

>> strcat(text, text2)

Function
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Different ways to get results

● Despite being written differently, these do a 
very similar thing!

● In both cases, there are values going in, 
something is done with them, and there's one 
value going out.

● Names for the values going in: arguments, 
parameters, operands
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This looks familiar!

● This is similar to running a command line 
program

● Program name, with parameters:
cp file1 file2

● Operator, with parameters:
3 + 4

● Function name, with parameters:
strcat('hello ',text2)
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This looks familiar! (part 2)

● The MATLAB prompt keeps track of your 
previous commands

● You can use the up arrow to go back through 
this history

● You can edit a line and run it again, or just run it 
again as-is

● This is exactly the same as the Unix shell
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Comments

● Anything you write after a % is a comment
● This can be used to document the intent behind 

a piece of code
● For example, if you're doing something based 

on a paper, you could add a citation
% as per Mendel, 1865
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Comments

● Try it!

>> % this will be ignored
>> a = 12   % here is my comment

… and you can check that this fails without %:

>> a = 12   here is my comment
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Comments

● This can be used to temporarily disable code
(more useful in code files, which we'll see later)

a = 16
%a = 16

● This is referred to as “commenting out” code



2014-10-20 27

Getting help

● If you see a function you don't know, either ....
– put the cursor on its name and press F1, or

– right-click and choose “Help on Selection”, or

>> doc function_name
● The only function we know so far is strcat
● Try one of these methods, to see the help for 

strcat
(you may have to wait a moment!)
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Getting help

● More generally, press F1, click on the help icon, 
or use the search box to see documentation
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Getting help

● Plus, you can always ask the internet!
● The usual caveat applies: the person giving 

advice might have a different system to you
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Showing results

● To show (print) a value in MATLAB we can just 
write it

>> result = 97
>> result

● This shows the variable name and the value
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Not showing results

● To do something without showing a value, use 
a semicolon ';' at the end of the line

>> result = 97;
● This still runs
● The variable 'result' will be set to 97

... but nothing is shown on the screen.
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Printing results, disp

● Note that this also prints the variable name

(or if there is none, a default “ans =”)
● To print a value without this, use disp()
● Try these and compare:

>> 10004
>> disp(10004)
>> 'hello!'
>> disp('hello!')
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fprintf

● If we want more control of how values are printed we can 
use the fprintf function

● fprintf can print one value:

>> a = 20;
>> fprintf('The value of a is %d.\n',a)

● or many:
>> b = 18.0015
>> fprintf('a is %d, b is %f.\n',a,b)

● or none:

>> fprintf('Good afternoon!\n')
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fprintf

● The first argument to fprintf is a format string
● This can contain a number of special codes 

starting with %
● This code specifies how to print the value
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Format strings

● Format strings print the values they are given
● Special codes starting with % in the string are 

replaced with these values, in order

>> things = 8
>> fprintf('number of things: %d\n',things)

>> a = 6
>> b = 14
>> fprintf('some numbers: %d and %d\n',a,b)
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Format codes

● These codes starting with % are also called 
format specifiers

● There are many of these, and they correspond 
to the type of the value being shown:

– %d means “a whole number”
– %f means “a floating-point number” (i.e. a 

number with a decimal point)
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Format codes

● Sometimes a value can be shown in more than 
one way

● E.g. if the value is 18, we can print this as a 
whole number or a floating-point number:

fprintf('%f or %d ....\n',18,18)
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Newlines

● In the format string, '\n' means newline
● Try this:

fprintf('over\nseveral\nlines\n');
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Exercise 1

● Create two variables, room and seats and give 
each a value (whole numbers only)

>> year = 2014;
>> students = 85;

● Now use the 'fprintf' function to print out these 
numbers in a sentence.

● Your output should look like this:

In 2014, 85 people studied maths 
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I just want some output!

● If this seems a little complicated you can 
always use disp()

● disp() doesn't need you to give format codes or 
a newline at the end

● You can only print one thing

>> disp(3.001)
>> disp('Good afternoon')
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Matrices

● A matrix is a rectangular grid containing 
numbers

● These can come in all sizes

49.1

-18.6

-80.2

7 12 -3

4 6 8

-8 0 1

-21 2 19 7

4 3 1 2

3 x 1
(or '3 by 1') 4 x 3 1 x 4

1 x 1



2014-10-20 42

Matrix sizes

● The size of an matrix is specified by the number 
of rows first, then the number of columns

e.g. 5 x 3 (or '5 by 3')

124 -893 540
6 45 -100

712 38 464
333 0 202
118 -71 42

5 rows

3 columns
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Arrays

● You'll sometimes see these referred to as 
“arrays” as well

● The individual numbers in the array are referred 
to as “elements”
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Matrices in MATLAB

● Create a matrix using square brackets:
>> B = [7 12; 4 6; -8 0; -21 2] 

7 12
4 6
-8 0

-21 2

This is the matrix:
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Matrices in MATLAB

● Some more examples:

>> example_matrix = [1 2 3; 4 5 6]
>> C = [8 7 6]
>> D = [0; 4; 18; 22]

● To make them simpler to type all these 
examples use whole numbers; but they don't 
have to!
>> E = [0.00003 14.8; 12.7 1.8e2]
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Writing matrices

● A semicolon indicates a new row of the matrix
● Within a row, the elements can be separated by 

a comma or a space

>> B = [7 12; 4 6; -8 0; -21 2]

is equivalent to

>> B = [7,12; 4,6; -8,0; -21,2]
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Matrices in MATLAB

● Each of these examples creates a new variable
● Our previous variables contained a single 

number, or some text
● These ones contain matrices
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Matrix size

● Now ask MATLAB what size of an array is

>> size(B)
● This is specified as the number of rows, then 

the number of columns
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Exercise 2

● Create a new variable called Z containing a 
matrix that looks like this: 

24 -83 54
6 45 -10

● This is a 2 x 3 matrix
● Use size() to check this 
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Vectors

● In MATLAB a vector is represented by a matrix 
which has either:

– only one row (a row vector) or
– only one column (a column vector)

4 3 1 2

49.1

-18.6

-80.2

Column vector

Row vector
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Scalars

● A scalar is a single value
● In MATLAB, a scalar is treated as a 1 x 1 matrix

>> n = 3
>> size(n)

● This is a 1 x 1 matrix, 1 row and 1 column

3
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Getting values out of a matrix

● We index a matrix by giving the row number, then the 
column number, of the element we want

>> M = [7 12 -3; 4 6 8; -8 0 1; -21 2 19]
>> M(2,3)

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33
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Exercise 3

● Work out the correct indexes to find the following numbers 
in the matrix M

● For example: to find -8

 >> M(3,1)
● Now repeat this for 12, 19, and 0

● Remember if you want to see what M looks like, you can type:

 >> disp(M)

or just

 >> M
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Setting individual elements

● We can set an individual element of a matrix in 
a similar way

>> disp(M)
>> M(2,3) = 1200
>> disp(M)

and set it back again:
>> M(2,3) = 8
>> disp(M)
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Indexing

● We can get more than one value out of a matrix

(this is still called indexing)
● When it's used as an index, ':' means 'select all'
● Try these:
>> M(2,:)
>> M(:,3)

● What's happening here?
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Selecting rows and columns

● 2,: means “second row, all columns”, and
● :,3 means “all rows, third column”

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33
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Exercise 4

● For M, how would you select this row?:

7 12 -3
● Again for M, select this column:

12

6

0

2
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Ranges in indexing

● You can also use : to select a range
● For example, try:

>> M(2,2:3)
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Ranges in indexing

● M(2,2:3) selects row 2, and columns 2 to 3

● What we get is the part of row 2 in columns 2 
and 3

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33
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Ranges in indexing

● We can do this for columns and rows
>> M(2:4,1:2)

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33



2014-10-20 61

Exercise 5

● For M, use this kind of indexing to select

7  12
4   6

and then

 4  6  8
-8  0  1
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Comparison, True and False

● You can use == to compare numbers

>> 2 == 2
>> 2 == 3

● This is like asking a question, for example,
“is 2 equal to 2?”

● The answer is given as 1 (true) or 0 (false)
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= vs. ==

● Setting a variable:

>> n = 2

is a command:

“make n contain 
number 2”

● Comparison:

>> n == 2

asks a question:

“does n contain the 
number 2?”
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Comparison

● Conversely, ~= means “not equal to”

>> 61 ~= 61
>> 48 ~= -99

● Wherever we use a number, we could also use 
a variable containing a number

>> n = 8     % set n to 8
>> n == 40   % does n equal 40?
>> n ~= 12   % does n not equal 12?
>> n == 8    % does n equal 8?
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Comparison

● Similarly:

>> n = 8      % set n to 8
>> n > 3
>> n < 12
>> n >= 10
>> n <= 8
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Comparison

● The resulting True or False value can be 
stored, in the same way that we store the result 
of any other calculation

>> count = 15
>> limit = 12
>> limit_passed = (count > limit)
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Exercise 6

● Use a comparison to check whether 299 times 
134 is greater than 40000

● Now do the same, but first put the numbers into 
variables

>> a = 134;
>> b = 299;
>> limit = 40000;
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Condition

● In general, a piece of code that tests something 
to see if it's true or false is referred to as a 
condition

● What can we use this for?
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if

● Assuming that 'a', 'b', and 'limit' are still defined 
from Exercise 6

● Type this:

>> if a*b > limit
    disp('over the limit!')
end

● Note: you can press Return after the first line,
MATLAB will realise that you have more to say
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if

if a*b > limit
    disp('over the limit!')
end

● The value of the expression after the 'if' is computed

a*b > limit

● If this condition is true, then the code between 'if' and 'end' 
is run

● Otherwise, we jump straight to the code after 'end'
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if

● Let's check what happens in the other case, 
when the condition is false

● Change something so that
a*b > limit
is false
(for example, you could set 'limit' to 50000)

● Now run the 'if' code again:
if a*b > limit
    disp('over the limit!')
end
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Code files

● So far we've only typed code in to the MATLAB 
prompt

● You can also type a sequence of commands 
into a file to make a MATLAB program

● This stores the instructions so you can edit 
them, and run them more than once

● Let's do that now ....
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.m file – Create

● Click on “New Script” in the top left of your 
MATLAB window

● In the window that appears, click “Save” (again, 
top left) and give the file a name ending in .m
(as always, no spaces in the filename!)

● Notice that this window doesn't have the '>>' 
prompt

● In contrast to code typed on the prompt, the 
code you type in here won't run immediately
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.m files – Edit

● Now you're ready to edit your first MATLAB 
script

● When a script is run, all its lines of code are run 
in order

● This is the same as if you'd typed them all in 
again
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.m files – Edit

● Copy some simple code we've already run.
Note: You don't need the prompt >> characters 
in the .m file!
a = 134;
b = 299;
limit = 40000;
if a*b > limit
    disp('over the limit!')
end

● Click on “Save” to save the code
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.m files – Run

● To run the .m file, click “Run” (the green triangle 
icon at the top)

● The output from running the .m file will appear 
in the prompt window
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Running .m files

● Click on 'Run', and the name of the .m file 
(without .m extension) appears at the prompt

● The .m file can be run by typing this name at 
the prompt

● E.g. if your file was called limit_exercise.m, you 
could type:

>> limit_exercise
● Try it!
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Flow of control

● To be clear about what's happening, we can 
always add code to output some text

● Add a new line just before the 'if', like this:

disp('starting')

and another new line just after the 'end':

disp('finishing')
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Testing

● Now run the program, and look at the output
● Change one of the inputs so that the condition 

will be false – for example, you could change 
the value of 'b' to zero

● Run it again and note how the output changes
● It's always worth testing every 'path' (possibility) 

in your code like this
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if-else

● Optionally, we can use 'else' to give some code to be run if 
the condition is false.

if a*b > limit
    disp('over the limit!')
else
    disp('under the limit!')
end

● Either

– 'a' times 'b' is greater than 'limit', and the first bit of code 
is run, or

– it is not, and the second is run.
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Another 'if' example

● Open a new code file, and save it under a different name 
to the first

● Type the following:

balance = 120;
if balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',balance)
end

● Run the code

● Try changing the value of 'balance' and running it again
(include some negative values for 'balance')



2014-10-20 82

Exercise 7

● What's wrong with the code, in particular when 
'balance' is a negative number?

● What do you think could be done to correct it?
● Are there any values of 'balance' that the code 

doesn't deal with correctly?
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elseif

● What if you want to test more than one 
condition?
if balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',balance)
end

● This doesn't behave correctly when balance is 
exactly zero ....
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elseif

● Change your code to read:
if balance == 0

fprintf('I owe you nothing\n')
elseif balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',-balance)
end
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elseif

● In general:
● Each of the conditions after the 'if' and 

subsequent 'elseif's are tested in order
● If one of them is true, then the corresponding 

code is run
● If none of these are true, the code after 'else' 

is run



2014-10-20 86

Combining conditions, and

● We can apply more than one condition at once 
with logical operators

● & means 'and'

>> n = 20
>> m = -14
>> n > 10 & m < 0
>> n > 40 & m < 0
>> n > 40 & m == 8

● Both sides must be true for the result to be true
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Combining conditions, or

● | means 'or'
● This is the 'pipe' character
● This is either on the key next to 'z' or the key 

next to '1'
>> n > 10 | m < 0
>> n > 40 | m < 0
>> n > 40 | m == 8

● If either side is true (or both) the result is true
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Combining conditions, not

● ~ means 'not'
● The tilde character is on the key next to Return
● Unlike the others, this only works on one value

>> n < 0
>> ~(n < 0)

● It inverts the value (true to false, false to true)
● Why doesn't this do what we expect?

>> ~n < 0
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Exercise 8

● In a new code file, write:

current_time = 14

● This is the hour (24h clock, from 0 to 23)

● Write something which displays:

– 'Good morning' if the time is between 3 and 12

– 'Good afternoon' if the time is between 13 and 18

– 'Good evening' if the time is between 19 and 22

– 'Good night' if the time is 0, 1, 2, or 23
● Run this with a few different values of current_time 
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Exercise 8, continued

● At the top of your file, add

weekday = 4
● This is the day of the week as a number
● 1 is Monday, 7 is Sunday
● Now change your program so that:

– On Saturday, we're informal and just say 'Hi' all day

– On Sunday, we don't say 'Good afternoon' until 14
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for

● 'if' allows us to choose between different code 
blocks

● What if we want to run the same code many 
times?

● We can use 'for' – try this at the prompt:

>> for n = 1:10
disp(n)
end
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for

● So, we know we can run for on a range of 
integers

● What else can we do?
● Try this again, but using different first lines:

for n = 10:20

for n = [-20 49 62 1000]

for n = 0:0.05:1
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'for' loops

● This is a kind of loop
● The code inside the loop – in this case, just

disp(n)

is run repeatedly, for each value given
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'for' loops

● We could have any amount of code in the loop, 
though, e.g. (no need to type this):

for n = 1:10
    m = n + 2
    fprintf('n is: %d, m is: %d\n',n,m)
end
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A digression about ranges

● This part of the 'for' code specifies a range:

1:10
● This isn't special code just used in 'for'
● It means 'an array with the numbers 1 to 10'
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A digression about ranges

● In general, a range looks like this:

start:stop     OR     start:spacing:stop
● So for example, you could type:

>> 0:2:10

which gives you an array, or

>> my_range = 0:2:10

to put this array into a variable
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Ranges and indexing

● This connects up with what we saw in indexing

D(1,5:10)

means 'the first row, columns five to ten' of D
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Exercise 9

● Show a nine times table (i.e. the first 12 
multiples of 9)

● Use a 'for' loop, the * operator, and the disp() 
function
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MATLAB hates loops

● Most things we can do in a loop, we can just do 
to a whole array

● How do you think you might multiply the 
numbers 1 to 10 by 9, if not using a loop?
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MATLAB hates loops

● Try this:

>> X = 1:10
>> X*9

● What happens when you try this:

>> 1:10 * 9
● Why do you think this gives a different result?
● What can we do to correct it?
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MATLAB doesn't really hate loops

but ....
● Avoiding loops can make code more concise
● Your intent is usually clearer, too
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Matrix operations

● As this shows, we can do maths on whole 
matrices

● Let's try this out with a small example:

>> B = [-2 -8; 9 4]
>> B + 1
>> B + 10
>> B + 100
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Matrix operations

● As you can see, this adds the number you give 
to each of the elements of Y

● This works for other mathematical operations:

>> B – 20
>> B .* 5
>> B ./ 10

● We use .* and ./ here because * and / are 
reserved for other uses!
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Transpose

● A matrix can be transposed using an 
apostrophe ' after its name:

>> B'
● Transposing flips the matrix so that the rows 

become columns (and the columns become 
rows)

● Note that the ' must be just after the matrix, 
without any spaces
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Transpose

● This is more obvious in non-square matrices:

>> G = [1 2 3 4; 5 6 7 8]
>> G'

● Even without looking at the actual matrix, you 
can also see the effect on the size.

● The counts of rows and columns are swapped:

>> size(G)
>> size(G')
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Working with matrices

● We can also perform calculations with two 
matrices

>> A = [1 2; 3 4]

>> C = A + B

(1 2
3 4)+(−2 −8

9 4 )=(−1 −6
12 8 )

● The equivalent mathematical notation:
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Maths with two matrices

● Similarly, for subtraction:

>> D = A - B

(1 2
3 4)−(−2 −8

9 4 )=( 3 10
−6 0 )



2014-10-20 108

Matrix multiplication

● Careful with * ....
● .* means “multiply individual elements”

(referred to as elementwise multiplication)

>> E = A .* B
● * means “matrix multiplication”

>> F = A * B
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Matrix “division”

● Similarly with /
● ./ means “divide individual elements”

(elementwise division)
● There's no such thing as matrix “division”, but:

>> A / B

matrix-multiplies A by the inverse of B
● In MATLAB we would write this:

>> A * inv(B)
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Joining matrices together

● We can concatenate matrices the same way we 
make them from numbers

● Recall that, for example

[1, 2, 3]

puts numbers in a row, and

[1; 2; 3]

puts them in a column
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Joining matrices together

● Try these:

>> [A, B]
>> [A; B]

● As you might expect,

>> [A, B]

joins (or concatenates) horizontally, and

>> [A; B]

joins vertically
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Joining matrices together

● For this to work the matrices must be the right 
shape

● To join horizontally, they must have the same 
number of rows

● To join vertically, they must have the same 
number of columns

● Thinking of matrices as tables, the side on 
which they are joined must be the same size
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Joining matrices together

● Joining horizontally:

but joining these vertically does not work:

24 -83 54
6 45 -10

-3 42
16 0

24 -83 54 -3 42
6 45 -10 16 0

24 -83 54
6 45 -10

-3 42
16 0
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Exercise 10

● Here are four matrices in MATLAB notation
● Find all the combinations in which they can be 

joined together vertically or horizontally

>> W = [1 2 3; 4 5 6; 7 8 9; 0 0 0]
>> X = [24 -83 54; 6 45 -10]
>> Y = [-3 42; 16 0]
>> Z = [NaN; -Inf]
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Matrix functions: diag

● Taking an example 3 x 3 matrix:
>> D = [-1 43 37; -10 52 32; 30 -44 -67]

● We can take the diagonal of D using diag():

>> diag(D)
● This gives the numbers from the top-left of D in 

a diagonal line
● To put it another way, it's the same as:

>> [D(1,1) D(2,2) D(3,3)]
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Matrix functions: triu, tril

● The triu and tril functions return the upper and 
lower triangular parts of a matrix

>> triu(D)
>> tril(D)

● These give the diagonal plus everything above 
it (upper) or below it (lower)
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Matrix functions, sum

● The sum() function gives the sum along rows or 
columns

● Sum of columns:

>> sum(D,1)
● Sum of rows:

>> sum(D,2)
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Vector dot product

● The dot() function gives the vector dot product

>> U = [-1 43 37]
>> V = [-10 52 32]
>> dot(U,V)
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Vector dot product

● We can check this using some of what we've 
already learned:

>> products = U.*V
>> sum(products, 2)

● Also note that this is the same as:

>> U*V'
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repmat

● The repmat() function replicates a matrix to 
create a larger one

● It's used like this:

repmat(M,[row col])

where:
– M is the matrix to be replicated

– row is the number of “rows of M”

– col is the number of “columns of M”
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Example

● Try this:

>> M = [1 4; 9 16]
>> repmat(M, [2 3])

● You'll see that M is repeated:

- twice vertically (two “rows of M”)
- three times horizontally (three “columns of M”)
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Exercise 11

● Define the following vectors:

>> X = [1; 2; 3]
>> Y = [-4 -5 -6]

● Using repmat() on X, make a 3 by 3 matrix
● Using repmat() on Y, make a 5 by 6 matrix

(Remember: if you want can use the size() 
function to check the size of a matrix, rather 
than counting rows and columns on the screen)
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Creating matrices

● We already know how to create a matrix with 
specific, different values in it, e.g.:

 >> D = [-1 43 37; -10 52 32; 30 -44 -67]
● There are some other special functions that 

allow us to create matrices
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ones

● The “ones” function creates a matrix consisting 
only of ones

● Following the usual convention, it takes a 
number of rows, and a number of columns

● e.g. to create a 4 x 3 matrix:

>> ones(4,3)
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zeros

● Similar to ones() this creates a matrix 
consisting only of zeros

● e.g. to create a 2 x 8 matrix of zeros:

>> zeros(2,8)
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Identity matrix, eye()

● The “eye” function creates an identity matrix
● Identity matrixes are always square, so it only 

takes one number (which is both the number of 
rows and of columns)

● e.g. to create a 5 by 5 identity matrix:

>> eye(5)
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Exercise 12

● Using the ones() function, and what we've 
already learned about arithmetic with matrices, 
how would you quickly create:

– a 6 by 3 matrix
– where every element of the matrix is 12?
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Plotting

● We can plot a line simply with the “plot” function
● This takes an array of X values and an array of 

Y values, e.g.

>> X = [1 2 4 5 8];
>> Y = [-6 8 7 3 -1];
>> figure
>> plot(X, Y)
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Changing plot colours and style

● We can specify the colour and style of the line 
(or points)

● e.g.

>> plot(X, Y, 'r')
>> plot(X, Y, 'gx')
>> plot(X, Y, 'b--')

● There are lots of possibilities
● See the documentation for “plot” for more 

details
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Adding some annotations

● We can add a title, and labels for the x and y 
axes

>> title('My example graph')
>> xlabel('time (days)')
>> ylabel('temperature (deg C)')
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Changing the x and y range

● We can use the axis() function to give the limits 
for the plot

● These are given in a list:

x start, x end, y start, y end
● e.g.

axis([0 10 -9 9])
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Plotting multiple lines

● You can plot multiple lines on the same chart
● Try this:

>> Y2 = [2 4 -7 6 4];
>> plot(X,Y,'r--',X,Y2,'bv')
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Functions

● We can write our own functions, which we can 
then use just like built-in functions:

● our own functions will take a number of 
parameters (or none!)

● and can also return (i.e. give back) a value
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Functions

● Functions allow you to store a set of 
instructions and run them on different values, 
for example:

function [result] = add_two(n)
    result = n+2;
end
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Function in a .m file

● Functions must be defined in .m files
● The file has the same name as the function
● Open a new .m file, this time by clicking

New -> Function
● This opens a template for a function
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Function in a .m file

● Edit the template to look like this:

function [result] = add_two(n)
    result = n+2;
end

● Save the file
● You'll find that MATLAB suggests the correct 

filename, which is the function name (and .m)
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Running your function

● Now run your function:

>> add_two(3)
>> add_two(-42)
>> add_two(0)
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Function naming

● The rules for creating names are the same as 
for variables

● Reminder: 
● Names must start with a letter, and can contain 

letters, numbers and underscores
● Names are case sensitive
● They can't contain spaces
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How a function is defined

● A function definition:

function [result] = add_two(n)
    result = n+2;
end

Name of return value Name of function

Function body
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How a function is called

● Reminder: 
● A function is called with its name, followed by 

the parameters in brackets:

 >> add_two(8)
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What happens when a function is called

● The instructions in the function are followed 
from the top to the end

● Values are then given back (returned) to the 
point where it was called

● The values returned are the ones specified at 
the top of the function (in our example above 
this is “result”)
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Function with no return value

● A function doesn't have to return anything
● If it doesn't, then the first line changes
● For example, a function like this:

function [result] = my_function(n)

without a return value would be:

function my_function(n)
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Another example function

● Open another .m file with New -> Function
● Edit the template to look like this:

function [string_out] = greeting(to_greet)
    string_out = ['Hello ', to_greet];
end

● Save this (as greeting.m)
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An aside on joining strings

● MATLAB treats strings like arrays
● The same way we can do this:

>> V = [1 2 3 4];
>> W = [5 6 7 8];
>> [V W]

we can also do this:

>> g = 'Hello '
>> n = 'Edinburgh'
>> [g n]
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Another example function

● Now run the function

>> x = greeting('you');
● What is in x now? Have a look ....
● Try this out with a few values

>> disp(greeting('Edinburgh'));
● Quick exercise: can you give the function a 

value that causes an error?
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Exercise 13

● Open another .m file, to write another function

● This will take a string as a parameter, like the 
“greeting” function

● We want our new function to do this:

>> greet_and_count('Anna')
Hello Anna
Your name has 4 letters
>> greet_and_count('Andrew')
Hello Andrew
Your name has 6 letters
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Exercise 13, clues

● You can call the greeting() function from your 
new function

● You'll need fprintf()
● You'll also need the length() function which can 

measure the length of a string
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Exercise 13, questions

● Are there any input values that cause an error?
● Are there any input values that cause “wrong” 

(or wrong-looking) output?
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Exercise 14

● Change your function to do something sensible: 

– when the input is only one character long
– when the input is empty

● These inputs would look like this:

>> greet_and_count('B')
>> greet_and_count('')

● You'll need to use if .... elseif .... end
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Exercise 15

● Start a new function called bars()

● It should take a row vector as input

● For each number in the vector, in order, it should show 
that number of '*' on a line

● For example:

 >> bars([1 6 2 4])
*
******
**
****
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Exercise 15, clues

● You'll need to use a for ... end loop to work 
through the input vector

● You can use repmat to copy strings, e.g.:
>> repmat('moo ', [1 20])

(if this seems confusing try it for a few different 
values)
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Function example

● Download example_function.m from the usual place
(short link: http://edin.ac/1y1Pd7K)

function [result] = example_function(M)
    tl = M(1,1);
    tr = M(1,end);
    bl = M(end,1);
    br = M(end,end);
    if tl == tr & tl == bl & tl == br
        result = 1;
    else
        result = 0;
    end
end

http://edin.ac/1y1Pd7K
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Indexing note

● As an index, “end” always means the last thing
● So, M(3,end) means the element in the third 

row, and last column of M
● This can be used in ranges e.g.

>> M(4:6, 2:end)
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Exercise 16

● This is more of a thought exercise!
● It's important to come up with good further 

questions to ask, as well as answers ....
● What do you think this function does?

(feel free to try it out)
● Can you think of a good name for it?
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The “return” keyword

● This stops a function from running any further
● No more instructions in the function are carried 

out
● The values specified at the top of the function 

are returned
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Early return

● Let's say we want our function to complain if it's 
given a matrix with less than 2 rows, or less 
than 2 columns

● In this case we'll return NaN (this is a common 
way to say “didn't work” in MATLAB)

● Let's break this problem down a little
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Exercise 17

● Open a code file
● Write this:
function [result] = less_than_2_by_2(M)

end

● Add code between these lines, so that:

– if M has less than 2 rows, or less than 2 
columns, the function returns 1

– otherwise, it returns 0
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Exercise 18

● Go back to the function in the last exercise
● At the start of the function, add some code to 

return early (returning NaN) if the input matrix is 
smaller than 2 by 2

● Use “if”, and the less_than_2_by_2 function
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Even or odd?

● Save this code as even.m

function [is_odd] = odd(n)
    return mod(n, 2)
end

● This returns 0 if a number is even and 1 if it is 
odd

● Try it out

(Note: the mod() function calculates 
remainders – see documentation for details)
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Exercise 19

● Open a new .m file
● Write a function called odd_count() that

– takes a row vector as its only parameter
– returns the number of odd numbers in the 

vector
● Try it on some examples

>> odd_count([1 2 3 4])
>> odd_count([-12 -9 -7 -5 1 0 6])
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