
2014-10-20 1

Introduction to MATLAB

Alisdair Tullo
2014

2014-10-20 2

Hello!

● Informal lab / lecture session
● Assumes no prior programming experience
● Two hours, with a 10 minute break
● One-third talking and two-thirds practical work
● Feel free to ask us questions, at any time
● Feel free to help each other and discuss the

exercises

2014-10-20 3

Purpose

● This is an introduction to MATLAB
● This will help you get familiar with MATLAB and

some general computer programming concepts
● Exploration is encouraged – try the examples

given, and anything else that occurs to you!

2014-10-20 4

Failure

● Computer programming involves lots of failure
● Usually you have to fail several times to

succeed once
● This is ok and happens to everyone
● Most of the time there will be an error message,

which will give you a clue to the solution for the
problem

2014-10-20 5

Keyboard practicalities

● Go to System Preferences -> Language and
Region

● Choose Keyboard Preferences
● Click on +, and add “British-PC”
● Close this window
● At the top-right of the screen, click on the flag

and make sure “British-PC” is selected

2014-10-20 6

Even so

● One key is transposed on some machines!
● This is the key with:

● It's swapped with the very top-left key, which is
next to 1

|
\

2014-10-20 7

MATLAB

● Open MATLAB (in Applications -> Science)

2014-10-20 8

The MATLAB prompt

● From now on, whenever you see this:

>>

it indicates something that you can type in to
MATLAB

● Some of the things you type in will produce
error messages

● Some of the things I tell you to type in will
produce error messages

2014-10-20 9

Saying hello to MATLAB

● Try this:

>> 'hello'

2014-10-20 10

MATLAB as a calculator

>> 2+2
>> 2-20
>> 6*3
>> 1/10
>> 10^3
>> (2*3)+4
>> 2*(3+4)
>> 2*3+4
>> 2.5/1000000

2014-10-20 11

Numbers

● This last answer is in “floating point” notation

2.5e-4 = 2.5 x 10-4

 = 2.5 x 0.0001

 = 0.00025
● Try these:

>> 8e3
>> 4.5e2
>> 1e1

2014-10-20 12

Numbers

● There are also some “special” values you might
see. MATLAB still regards these as numbers.
For example:

>> 1/0
● You may also see:

– NaN (“Not a Number”)
– i (or j) for the square root of -1

2014-10-20 13

Variables

● We can create a variable using =

>> my_number = 3
● A variable is like a box for a value
● The variable name is the label on the box
● MATLAB will remember the value we give:

>> my_number

3
my_number

2014-10-20 14

Variables

● You can use a variable with a number in it
wherever you would use a number

>> my_number + 5
● You can put the result of such a calculation into

another variable

>> another_number = my_number + 5

2014-10-20 15

Variables

>> a=3
>> a
>> b=14
>> a+b
>> you_can_use_long_names = 5000
>> d = a + 20
>> i_dont_exist

2014-10-20 16

Variables

● What can you use as a variable name?

>> a = 12
>> A = 0.7
>> 1number = 43
>> _things = 10
>> word count = 20
>> end = -40000

2014-10-20 17

Variable names

● Variable names must start with a letter, and can
contain letters, numbers and underscores

● Names are case sensitive
● They can't contain spaces, so what if you want

to have multiple words in your variable name?

>> numberofthings = 12
>> numberOfThings = 12
>> number_of_things = 12

2014-10-20 18

More variables

● There are other kinds of values in MATLAB, for
example, text:

>> some_text = 'a line of text'
>> text2 = ' and some more text'
>> text3 = strcat(some_text, text2)

● or true/false values
>> is_ready = true

2014-10-20 19

Types

● These different kinds of values are referred to
as types

● Numbers – floating point

0 -1200 5.0e20 0.0001 Inf NaN
● Text – string

'hello' '1000' 'this is a text'
● True or False – Boolean or logical

true (1), false (0)

2014-10-20 20

Different ways to get results

● Functions and operators

Values

>> 2+2

Operator

Values

>> strcat(text, text2)

Function

2014-10-20 21

Different ways to get results

● Despite being written differently, these do a
very similar thing!

● In both cases, there are values going in,
something is done with them, and there's one
value going out.

● Names for the values going in: arguments,
parameters, operands

2014-10-20 22

This looks familiar!

● This is similar to running a command line
program

● Program name, with parameters:
cp file1 file2

● Operator, with parameters:
3 + 4

● Function name, with parameters:
strcat('hello ',text2)

2014-10-20 23

This looks familiar! (part 2)

● The MATLAB prompt keeps track of your
previous commands

● You can use the up arrow to go back through
this history

● You can edit a line and run it again, or just run it
again as-is

● This is exactly the same as the Unix shell

2014-10-20 24

Comments

● Anything you write after a % is a comment
● This can be used to document the intent behind

a piece of code
● For example, if you're doing something based

on a paper, you could add a citation
% as per Mendel, 1865

2014-10-20 25

Comments

● Try it!

>> % this will be ignored
>> a = 12 % here is my comment

… and you can check that this fails without %:

>> a = 12 here is my comment

2014-10-20 26

Comments

● This can be used to temporarily disable code
(more useful in code files, which we'll see later)

a = 16
%a = 16

● This is referred to as “commenting out” code

2014-10-20 27

Getting help

● If you see a function you don't know, either
– put the cursor on its name and press F1, or

– right-click and choose “Help on Selection”, or

>> doc function_name
● The only function we know so far is strcat
● Try one of these methods, to see the help for

strcat
(you may have to wait a moment!)

2014-10-20 28

Getting help

● More generally, press F1, click on the help icon,
or use the search box to see documentation

2014-10-20 29

Getting help

● Plus, you can always ask the internet!
● The usual caveat applies: the person giving

advice might have a different system to you

2014-10-20 30

Showing results

● To show (print) a value in MATLAB we can just
write it

>> result = 97
>> result

● This shows the variable name and the value

2014-10-20 31

Not showing results

● To do something without showing a value, use
a semicolon ';' at the end of the line

>> result = 97;
● This still runs
● The variable 'result' will be set to 97

... but nothing is shown on the screen.

2014-10-20 32

Printing results, disp

● Note that this also prints the variable name

(or if there is none, a default “ans =”)
● To print a value without this, use disp()
● Try these and compare:

>> 10004
>> disp(10004)
>> 'hello!'
>> disp('hello!')

2014-10-20 33

fprintf

● If we want more control of how values are printed we can
use the fprintf function

● fprintf can print one value:

>> a = 20;
>> fprintf('The value of a is %d.\n',a)

● or many:
>> b = 18.0015
>> fprintf('a is %d, b is %f.\n',a,b)

● or none:

>> fprintf('Good afternoon!\n')

2014-10-20 34

fprintf

● The first argument to fprintf is a format string
● This can contain a number of special codes

starting with %
● This code specifies how to print the value

2014-10-20 35

Format strings

● Format strings print the values they are given
● Special codes starting with % in the string are

replaced with these values, in order

>> things = 8
>> fprintf('number of things: %d\n',things)

>> a = 6
>> b = 14
>> fprintf('some numbers: %d and %d\n',a,b)

2014-10-20 36

Format codes

● These codes starting with % are also called
format specifiers

● There are many of these, and they correspond
to the type of the value being shown:

– %d means “a whole number”
– %f means “a floating-point number” (i.e. a

number with a decimal point)

2014-10-20 37

Format codes

● Sometimes a value can be shown in more than
one way

● E.g. if the value is 18, we can print this as a
whole number or a floating-point number:

fprintf('%f or %d\n',18,18)

2014-10-20 38

Newlines

● In the format string, '\n' means newline
● Try this:

fprintf('over\nseveral\nlines\n');

2014-10-20 39

Exercise 1

● Create two variables, room and seats and give
each a value (whole numbers only)

>> year = 2014;
>> students = 85;

● Now use the 'fprintf' function to print out these
numbers in a sentence.

● Your output should look like this:

In 2014, 85 people studied maths

2014-10-20 40

I just want some output!

● If this seems a little complicated you can
always use disp()

● disp() doesn't need you to give format codes or
a newline at the end

● You can only print one thing

>> disp(3.001)
>> disp('Good afternoon')

2014-10-20 41

Matrices

● A matrix is a rectangular grid containing
numbers

● These can come in all sizes

49.1

-18.6

-80.2

7 12 -3

4 6 8

-8 0 1

-21 2 19 7

4 3 1 2

3 x 1
(or '3 by 1') 4 x 3 1 x 4

1 x 1

2014-10-20 42

Matrix sizes

● The size of an matrix is specified by the number
of rows first, then the number of columns

e.g. 5 x 3 (or '5 by 3')

124 -893 540
6 45 -100

712 38 464
333 0 202
118 -71 42

5 rows

3 columns

2014-10-20 43

Arrays

● You'll sometimes see these referred to as
“arrays” as well

● The individual numbers in the array are referred
to as “elements”

2014-10-20 44

Matrices in MATLAB

● Create a matrix using square brackets:
>> B = [7 12; 4 6; -8 0; -21 2]

7 12
4 6
-8 0

-21 2

This is the matrix:

2014-10-20 45

Matrices in MATLAB

● Some more examples:

>> example_matrix = [1 2 3; 4 5 6]
>> C = [8 7 6]
>> D = [0; 4; 18; 22]

● To make them simpler to type all these
examples use whole numbers; but they don't
have to!
>> E = [0.00003 14.8; 12.7 1.8e2]

2014-10-20 46

Writing matrices

● A semicolon indicates a new row of the matrix
● Within a row, the elements can be separated by

a comma or a space

>> B = [7 12; 4 6; -8 0; -21 2]

is equivalent to

>> B = [7,12; 4,6; -8,0; -21,2]

2014-10-20 47

Matrices in MATLAB

● Each of these examples creates a new variable
● Our previous variables contained a single

number, or some text
● These ones contain matrices

2014-10-20 48

Matrix size

● Now ask MATLAB what size of an array is

>> size(B)
● This is specified as the number of rows, then

the number of columns

2014-10-20 49

Exercise 2

● Create a new variable called Z containing a
matrix that looks like this:

24 -83 54
6 45 -10

● This is a 2 x 3 matrix
● Use size() to check this

2014-10-20 50

Vectors

● In MATLAB a vector is represented by a matrix
which has either:

– only one row (a row vector) or
– only one column (a column vector)

4 3 1 2

49.1

-18.6

-80.2

Column vector

Row vector

2014-10-20 51

Scalars

● A scalar is a single value
● In MATLAB, a scalar is treated as a 1 x 1 matrix

>> n = 3
>> size(n)

● This is a 1 x 1 matrix, 1 row and 1 column

3

2014-10-20 52

Getting values out of a matrix

● We index a matrix by giving the row number, then the
column number, of the element we want

>> M = [7 12 -3; 4 6 8; -8 0 1; -21 2 19]
>> M(2,3)

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33

2014-10-20 53

Exercise 3

● Work out the correct indexes to find the following numbers
in the matrix M

● For example: to find -8

 >> M(3,1)
● Now repeat this for 12, 19, and 0

● Remember if you want to see what M looks like, you can type:

 >> disp(M)

or just

 >> M

2014-10-20 54

Setting individual elements

● We can set an individual element of a matrix in
a similar way

>> disp(M)
>> M(2,3) = 1200
>> disp(M)

and set it back again:
>> M(2,3) = 8
>> disp(M)

2014-10-20 55

Indexing

● We can get more than one value out of a matrix

(this is still called indexing)
● When it's used as an index, ':' means 'select all'
● Try these:
>> M(2,:)
>> M(:,3)

● What's happening here?

2014-10-20 56

Selecting rows and columns

● 2,: means “second row, all columns”, and
● :,3 means “all rows, third column”

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33

2014-10-20 57

Exercise 4

● For M, how would you select this row?:

7 12 -3
● Again for M, select this column:

12

6

0

2

2014-10-20 58

Ranges in indexing

● You can also use : to select a range
● For example, try:

>> M(2,2:3)

2014-10-20 59

Ranges in indexing

● M(2,2:3) selects row 2, and columns 2 to 3

● What we get is the part of row 2 in columns 2
and 3

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33

2014-10-20 60

Ranges in indexing

● We can do this for columns and rows
>> M(2:4,1:2)

7 12 -3 1

4 6 8 22

-8 0 1 3

-21 2 19 4

1 2 33

2014-10-20 61

Exercise 5

● For M, use this kind of indexing to select

7 12
4 6

and then

 4 6 8
-8 0 1

2014-10-20 62

Comparison, True and False

● You can use == to compare numbers

>> 2 == 2
>> 2 == 3

● This is like asking a question, for example,
“is 2 equal to 2?”

● The answer is given as 1 (true) or 0 (false)

2014-10-20 63

= vs. ==

● Setting a variable:

>> n = 2

is a command:

“make n contain
number 2”

● Comparison:

>> n == 2

asks a question:

“does n contain the
number 2?”

2014-10-20 64

Comparison

● Conversely, ~= means “not equal to”

>> 61 ~= 61
>> 48 ~= -99

● Wherever we use a number, we could also use
a variable containing a number

>> n = 8 % set n to 8
>> n == 40 % does n equal 40?
>> n ~= 12 % does n not equal 12?
>> n == 8 % does n equal 8?

2014-10-20 65

Comparison

● Similarly:

>> n = 8 % set n to 8
>> n > 3
>> n < 12
>> n >= 10
>> n <= 8

2014-10-20 66

Comparison

● The resulting True or False value can be
stored, in the same way that we store the result
of any other calculation

>> count = 15
>> limit = 12
>> limit_passed = (count > limit)

2014-10-20 67

Exercise 6

● Use a comparison to check whether 299 times
134 is greater than 40000

● Now do the same, but first put the numbers into
variables

>> a = 134;
>> b = 299;
>> limit = 40000;

2014-10-20 68

Condition

● In general, a piece of code that tests something
to see if it's true or false is referred to as a
condition

● What can we use this for?

2014-10-20 69

if

● Assuming that 'a', 'b', and 'limit' are still defined
from Exercise 6

● Type this:

>> if a*b > limit
 disp('over the limit!')
end

● Note: you can press Return after the first line,
MATLAB will realise that you have more to say

2014-10-20 70

if

if a*b > limit
 disp('over the limit!')
end

● The value of the expression after the 'if' is computed

a*b > limit

● If this condition is true, then the code between 'if' and 'end'
is run

● Otherwise, we jump straight to the code after 'end'

2014-10-20 71

if

● Let's check what happens in the other case,
when the condition is false

● Change something so that
a*b > limit
is false
(for example, you could set 'limit' to 50000)

● Now run the 'if' code again:
if a*b > limit
 disp('over the limit!')
end

2014-10-20 72

Code files

● So far we've only typed code in to the MATLAB
prompt

● You can also type a sequence of commands
into a file to make a MATLAB program

● This stores the instructions so you can edit
them, and run them more than once

● Let's do that now

2014-10-20 73

.m file – Create

● Click on “New Script” in the top left of your
MATLAB window

● In the window that appears, click “Save” (again,
top left) and give the file a name ending in .m
(as always, no spaces in the filename!)

● Notice that this window doesn't have the '>>'
prompt

● In contrast to code typed on the prompt, the
code you type in here won't run immediately

2014-10-20 74

.m files – Edit

● Now you're ready to edit your first MATLAB
script

● When a script is run, all its lines of code are run
in order

● This is the same as if you'd typed them all in
again

2014-10-20 75

.m files – Edit

● Copy some simple code we've already run.
Note: You don't need the prompt >> characters
in the .m file!
a = 134;
b = 299;
limit = 40000;
if a*b > limit
 disp('over the limit!')
end

● Click on “Save” to save the code

2014-10-20 76

.m files – Run

● To run the .m file, click “Run” (the green triangle
icon at the top)

● The output from running the .m file will appear
in the prompt window

2014-10-20 77

Running .m files

● Click on 'Run', and the name of the .m file
(without .m extension) appears at the prompt

● The .m file can be run by typing this name at
the prompt

● E.g. if your file was called limit_exercise.m, you
could type:

>> limit_exercise
● Try it!

2014-10-20 78

Flow of control

● To be clear about what's happening, we can
always add code to output some text

● Add a new line just before the 'if', like this:

disp('starting')

and another new line just after the 'end':

disp('finishing')

2014-10-20 79

Testing

● Now run the program, and look at the output
● Change one of the inputs so that the condition

will be false – for example, you could change
the value of 'b' to zero

● Run it again and note how the output changes
● It's always worth testing every 'path' (possibility)

in your code like this

2014-10-20 80

if-else

● Optionally, we can use 'else' to give some code to be run if
the condition is false.

if a*b > limit
 disp('over the limit!')
else
 disp('under the limit!')
end

● Either

– 'a' times 'b' is greater than 'limit', and the first bit of code
is run, or

– it is not, and the second is run.

2014-10-20 81

Another 'if' example

● Open a new code file, and save it under a different name
to the first

● Type the following:

balance = 120;
if balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',balance)
end

● Run the code

● Try changing the value of 'balance' and running it again
(include some negative values for 'balance')

2014-10-20 82

Exercise 7

● What's wrong with the code, in particular when
'balance' is a negative number?

● What do you think could be done to correct it?
● Are there any values of 'balance' that the code

doesn't deal with correctly?

2014-10-20 83

elseif

● What if you want to test more than one
condition?
if balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',balance)
end

● This doesn't behave correctly when balance is
exactly zero

2014-10-20 84

elseif

● Change your code to read:
if balance == 0

fprintf('I owe you nothing\n')
elseif balance > 0

fprintf('I owe you %d.\n',balance)
else

fprintf('You owe me %d.\n',-balance)
end

2014-10-20 85

elseif

● In general:
● Each of the conditions after the 'if' and

subsequent 'elseif's are tested in order
● If one of them is true, then the corresponding

code is run
● If none of these are true, the code after 'else'

is run

2014-10-20 86

Combining conditions, and

● We can apply more than one condition at once
with logical operators

● & means 'and'

>> n = 20
>> m = -14
>> n > 10 & m < 0
>> n > 40 & m < 0
>> n > 40 & m == 8

● Both sides must be true for the result to be true

2014-10-20 87

Combining conditions, or

● | means 'or'
● This is the 'pipe' character
● This is either on the key next to 'z' or the key

next to '1'
>> n > 10 | m < 0
>> n > 40 | m < 0
>> n > 40 | m == 8

● If either side is true (or both) the result is true

2014-10-20 88

Combining conditions, not

● ~ means 'not'
● The tilde character is on the key next to Return
● Unlike the others, this only works on one value

>> n < 0
>> ~(n < 0)

● It inverts the value (true to false, false to true)
● Why doesn't this do what we expect?

>> ~n < 0

2014-10-20 89

Exercise 8

● In a new code file, write:

current_time = 14

● This is the hour (24h clock, from 0 to 23)

● Write something which displays:

– 'Good morning' if the time is between 3 and 12

– 'Good afternoon' if the time is between 13 and 18

– 'Good evening' if the time is between 19 and 22

– 'Good night' if the time is 0, 1, 2, or 23
● Run this with a few different values of current_time

2014-10-20 90

Exercise 8, continued

● At the top of your file, add

weekday = 4
● This is the day of the week as a number
● 1 is Monday, 7 is Sunday
● Now change your program so that:

– On Saturday, we're informal and just say 'Hi' all day

– On Sunday, we don't say 'Good afternoon' until 14

2014-10-20 91

for

● 'if' allows us to choose between different code
blocks

● What if we want to run the same code many
times?

● We can use 'for' – try this at the prompt:

>> for n = 1:10
disp(n)
end

2014-10-20 92

for

● So, we know we can run for on a range of
integers

● What else can we do?
● Try this again, but using different first lines:

for n = 10:20

for n = [-20 49 62 1000]

for n = 0:0.05:1

2014-10-20 93

'for' loops

● This is a kind of loop
● The code inside the loop – in this case, just

disp(n)

is run repeatedly, for each value given

2014-10-20 94

'for' loops

● We could have any amount of code in the loop,
though, e.g. (no need to type this):

for n = 1:10
 m = n + 2
 fprintf('n is: %d, m is: %d\n',n,m)
end

2014-10-20 95

A digression about ranges

● This part of the 'for' code specifies a range:

1:10
● This isn't special code just used in 'for'
● It means 'an array with the numbers 1 to 10'

2014-10-20 96

A digression about ranges

● In general, a range looks like this:

start:stop OR start:spacing:stop
● So for example, you could type:

>> 0:2:10

which gives you an array, or

>> my_range = 0:2:10

to put this array into a variable

2014-10-20 97

Ranges and indexing

● This connects up with what we saw in indexing

D(1,5:10)

means 'the first row, columns five to ten' of D

2014-10-20 98

Exercise 9

● Show a nine times table (i.e. the first 12
multiples of 9)

● Use a 'for' loop, the * operator, and the disp()
function

2014-10-20 99

MATLAB hates loops

● Most things we can do in a loop, we can just do
to a whole array

● How do you think you might multiply the
numbers 1 to 10 by 9, if not using a loop?

2014-10-20 100

MATLAB hates loops

● Try this:

>> X = 1:10
>> X*9

● What happens when you try this:

>> 1:10 * 9
● Why do you think this gives a different result?
● What can we do to correct it?

2014-10-20 101

MATLAB doesn't really hate loops

but
● Avoiding loops can make code more concise
● Your intent is usually clearer, too

2014-10-20 102

Matrix operations

● As this shows, we can do maths on whole
matrices

● Let's try this out with a small example:

>> B = [-2 -8; 9 4]
>> B + 1
>> B + 10
>> B + 100

2014-10-20 103

Matrix operations

● As you can see, this adds the number you give
to each of the elements of Y

● This works for other mathematical operations:

>> B – 20
>> B .* 5
>> B ./ 10

● We use .* and ./ here because * and / are
reserved for other uses!

2014-10-20 104

Transpose

● A matrix can be transposed using an
apostrophe ' after its name:

>> B'
● Transposing flips the matrix so that the rows

become columns (and the columns become
rows)

● Note that the ' must be just after the matrix,
without any spaces

2014-10-20 105

Transpose

● This is more obvious in non-square matrices:

>> G = [1 2 3 4; 5 6 7 8]
>> G'

● Even without looking at the actual matrix, you
can also see the effect on the size.

● The counts of rows and columns are swapped:

>> size(G)
>> size(G')

2014-10-20 106

Working with matrices

● We can also perform calculations with two
matrices

>> A = [1 2; 3 4]

>> C = A + B

(1 2
3 4)+(−2 −8

9 4)=(−1 −6
12 8)

● The equivalent mathematical notation:

2014-10-20 107

Maths with two matrices

● Similarly, for subtraction:

>> D = A - B

(1 2
3 4)−(−2 −8

9 4)=(3 10
−6 0)

2014-10-20 108

Matrix multiplication

● Careful with *
● .* means “multiply individual elements”

(referred to as elementwise multiplication)

>> E = A .* B
● * means “matrix multiplication”

>> F = A * B

2014-10-20 109

Matrix “division”

● Similarly with /
● ./ means “divide individual elements”

(elementwise division)
● There's no such thing as matrix “division”, but:

>> A / B

matrix-multiplies A by the inverse of B
● In MATLAB we would write this:

>> A * inv(B)

2014-10-20 110

Joining matrices together

● We can concatenate matrices the same way we
make them from numbers

● Recall that, for example

[1, 2, 3]

puts numbers in a row, and

[1; 2; 3]

puts them in a column

2014-10-20 111

Joining matrices together

● Try these:

>> [A, B]
>> [A; B]

● As you might expect,

>> [A, B]

joins (or concatenates) horizontally, and

>> [A; B]

joins vertically

2014-10-20 112

Joining matrices together

● For this to work the matrices must be the right
shape

● To join horizontally, they must have the same
number of rows

● To join vertically, they must have the same
number of columns

● Thinking of matrices as tables, the side on
which they are joined must be the same size

2014-10-20 113

Joining matrices together

● Joining horizontally:

but joining these vertically does not work:

24 -83 54
6 45 -10

-3 42
16 0

24 -83 54 -3 42
6 45 -10 16 0

24 -83 54
6 45 -10

-3 42
16 0

2014-10-20 114

Exercise 10

● Here are four matrices in MATLAB notation
● Find all the combinations in which they can be

joined together vertically or horizontally

>> W = [1 2 3; 4 5 6; 7 8 9; 0 0 0]
>> X = [24 -83 54; 6 45 -10]
>> Y = [-3 42; 16 0]
>> Z = [NaN; -Inf]

2014-10-20 115

Matrix functions: diag

● Taking an example 3 x 3 matrix:
>> D = [-1 43 37; -10 52 32; 30 -44 -67]

● We can take the diagonal of D using diag():

>> diag(D)
● This gives the numbers from the top-left of D in

a diagonal line
● To put it another way, it's the same as:

>> [D(1,1) D(2,2) D(3,3)]

2014-10-20 116

Matrix functions: triu, tril

● The triu and tril functions return the upper and
lower triangular parts of a matrix

>> triu(D)
>> tril(D)

● These give the diagonal plus everything above
it (upper) or below it (lower)

2014-10-20 117

Matrix functions, sum

● The sum() function gives the sum along rows or
columns

● Sum of columns:

>> sum(D,1)
● Sum of rows:

>> sum(D,2)

2014-10-20 118

Vector dot product

● The dot() function gives the vector dot product

>> U = [-1 43 37]
>> V = [-10 52 32]
>> dot(U,V)

2014-10-20 119

Vector dot product

● We can check this using some of what we've
already learned:

>> products = U.*V
>> sum(products, 2)

● Also note that this is the same as:

>> U*V'

2014-10-20 120

repmat

● The repmat() function replicates a matrix to
create a larger one

● It's used like this:

repmat(M,[row col])

where:
– M is the matrix to be replicated

– row is the number of “rows of M”

– col is the number of “columns of M”

2014-10-20 121

Example

● Try this:

>> M = [1 4; 9 16]
>> repmat(M, [2 3])

● You'll see that M is repeated:

- twice vertically (two “rows of M”)
- three times horizontally (three “columns of M”)

2014-10-20 122

Exercise 11

● Define the following vectors:

>> X = [1; 2; 3]
>> Y = [-4 -5 -6]

● Using repmat() on X, make a 3 by 3 matrix
● Using repmat() on Y, make a 5 by 6 matrix

(Remember: if you want can use the size()
function to check the size of a matrix, rather
than counting rows and columns on the screen)

2014-10-20 123

Creating matrices

● We already know how to create a matrix with
specific, different values in it, e.g.:

 >> D = [-1 43 37; -10 52 32; 30 -44 -67]
● There are some other special functions that

allow us to create matrices

2014-10-20 124

ones

● The “ones” function creates a matrix consisting
only of ones

● Following the usual convention, it takes a
number of rows, and a number of columns

● e.g. to create a 4 x 3 matrix:

>> ones(4,3)

2014-10-20 125

zeros

● Similar to ones() this creates a matrix
consisting only of zeros

● e.g. to create a 2 x 8 matrix of zeros:

>> zeros(2,8)

2014-10-20 126

Identity matrix, eye()

● The “eye” function creates an identity matrix
● Identity matrixes are always square, so it only

takes one number (which is both the number of
rows and of columns)

● e.g. to create a 5 by 5 identity matrix:

>> eye(5)

2014-10-20 127

Exercise 12

● Using the ones() function, and what we've
already learned about arithmetic with matrices,
how would you quickly create:

– a 6 by 3 matrix
– where every element of the matrix is 12?

2014-10-20 128

Plotting

● We can plot a line simply with the “plot” function
● This takes an array of X values and an array of

Y values, e.g.

>> X = [1 2 4 5 8];
>> Y = [-6 8 7 3 -1];
>> figure
>> plot(X, Y)

2014-10-20 129

Changing plot colours and style

● We can specify the colour and style of the line
(or points)

● e.g.

>> plot(X, Y, 'r')
>> plot(X, Y, 'gx')
>> plot(X, Y, 'b--')

● There are lots of possibilities
● See the documentation for “plot” for more

details

2014-10-20 130

Adding some annotations

● We can add a title, and labels for the x and y
axes

>> title('My example graph')
>> xlabel('time (days)')
>> ylabel('temperature (deg C)')

2014-10-20 131

Changing the x and y range

● We can use the axis() function to give the limits
for the plot

● These are given in a list:

x start, x end, y start, y end
● e.g.

axis([0 10 -9 9])

2014-10-20 132

Plotting multiple lines

● You can plot multiple lines on the same chart
● Try this:

>> Y2 = [2 4 -7 6 4];
>> plot(X,Y,'r--',X,Y2,'bv')

2014-10-20 133

Functions

● We can write our own functions, which we can
then use just like built-in functions:

● our own functions will take a number of
parameters (or none!)

● and can also return (i.e. give back) a value

2014-10-20 134

Functions

● Functions allow you to store a set of
instructions and run them on different values,
for example:

function [result] = add_two(n)
 result = n+2;
end

2014-10-20 135

Function in a .m file

● Functions must be defined in .m files
● The file has the same name as the function
● Open a new .m file, this time by clicking

New -> Function
● This opens a template for a function

2014-10-20 136

Function in a .m file

● Edit the template to look like this:

function [result] = add_two(n)
 result = n+2;
end

● Save the file
● You'll find that MATLAB suggests the correct

filename, which is the function name (and .m)

2014-10-20 137

Running your function

● Now run your function:

>> add_two(3)
>> add_two(-42)
>> add_two(0)

2014-10-20 138

Function naming

● The rules for creating names are the same as
for variables

● Reminder:
● Names must start with a letter, and can contain

letters, numbers and underscores
● Names are case sensitive
● They can't contain spaces

2014-10-20 139

How a function is defined

● A function definition:

function [result] = add_two(n)
 result = n+2;
end

Name of return value Name of function

Function body

2014-10-20 140

How a function is called

● Reminder:
● A function is called with its name, followed by

the parameters in brackets:

 >> add_two(8)

2014-10-20 141

What happens when a function is called

● The instructions in the function are followed
from the top to the end

● Values are then given back (returned) to the
point where it was called

● The values returned are the ones specified at
the top of the function (in our example above
this is “result”)

2014-10-20 142

Function with no return value

● A function doesn't have to return anything
● If it doesn't, then the first line changes
● For example, a function like this:

function [result] = my_function(n)

without a return value would be:

function my_function(n)

2014-10-20 143

Another example function

● Open another .m file with New -> Function
● Edit the template to look like this:

function [string_out] = greeting(to_greet)
 string_out = ['Hello ', to_greet];
end

● Save this (as greeting.m)

2014-10-20 144

An aside on joining strings

● MATLAB treats strings like arrays
● The same way we can do this:

>> V = [1 2 3 4];
>> W = [5 6 7 8];
>> [V W]

we can also do this:

>> g = 'Hello '
>> n = 'Edinburgh'
>> [g n]

2014-10-20 145

Another example function

● Now run the function

>> x = greeting('you');
● What is in x now? Have a look
● Try this out with a few values

>> disp(greeting('Edinburgh'));
● Quick exercise: can you give the function a

value that causes an error?

2014-10-20 146

Exercise 13

● Open another .m file, to write another function

● This will take a string as a parameter, like the
“greeting” function

● We want our new function to do this:

>> greet_and_count('Anna')
Hello Anna
Your name has 4 letters
>> greet_and_count('Andrew')
Hello Andrew
Your name has 6 letters

2014-10-20 147

Exercise 13, clues

● You can call the greeting() function from your
new function

● You'll need fprintf()
● You'll also need the length() function which can

measure the length of a string

2014-10-20 148

Exercise 13, questions

● Are there any input values that cause an error?
● Are there any input values that cause “wrong”

(or wrong-looking) output?

2014-10-20 149

Exercise 14

● Change your function to do something sensible:

– when the input is only one character long
– when the input is empty

● These inputs would look like this:

>> greet_and_count('B')
>> greet_and_count('')

● You'll need to use if elseif end

2014-10-20 150

Exercise 15

● Start a new function called bars()

● It should take a row vector as input

● For each number in the vector, in order, it should show
that number of '*' on a line

● For example:

 >> bars([1 6 2 4])
*

**

2014-10-20 151

Exercise 15, clues

● You'll need to use a for ... end loop to work
through the input vector

● You can use repmat to copy strings, e.g.:
>> repmat('moo ', [1 20])

(if this seems confusing try it for a few different
values)

2014-10-20 152

Function example

● Download example_function.m from the usual place
(short link: http://edin.ac/1y1Pd7K)

function [result] = example_function(M)
 tl = M(1,1);
 tr = M(1,end);
 bl = M(end,1);
 br = M(end,end);
 if tl == tr & tl == bl & tl == br
 result = 1;
 else
 result = 0;
 end
end

http://edin.ac/1y1Pd7K

2014-10-20 153

Indexing note

● As an index, “end” always means the last thing
● So, M(3,end) means the element in the third

row, and last column of M
● This can be used in ranges e.g.

>> M(4:6, 2:end)

2014-10-20 154

Exercise 16

● This is more of a thought exercise!
● It's important to come up with good further

questions to ask, as well as answers
● What do you think this function does?

(feel free to try it out)
● Can you think of a good name for it?

2014-10-20 155

The “return” keyword

● This stops a function from running any further
● No more instructions in the function are carried

out
● The values specified at the top of the function

are returned

2014-10-20 156

Early return

● Let's say we want our function to complain if it's
given a matrix with less than 2 rows, or less
than 2 columns

● In this case we'll return NaN (this is a common
way to say “didn't work” in MATLAB)

● Let's break this problem down a little

2014-10-20 157

Exercise 17

● Open a code file
● Write this:
function [result] = less_than_2_by_2(M)

end

● Add code between these lines, so that:

– if M has less than 2 rows, or less than 2
columns, the function returns 1

– otherwise, it returns 0

2014-10-20 158

Exercise 18

● Go back to the function in the last exercise
● At the start of the function, add some code to

return early (returning NaN) if the input matrix is
smaller than 2 by 2

● Use “if”, and the less_than_2_by_2 function

2014-10-20 159

Even or odd?

● Save this code as even.m

function [is_odd] = odd(n)
 return mod(n, 2)
end

● This returns 0 if a number is even and 1 if it is
odd

● Try it out

(Note: the mod() function calculates
remainders – see documentation for details)

2014-10-20 160

Exercise 19

● Open a new .m file
● Write a function called odd_count() that

– takes a row vector as its only parameter
– returns the number of odd numbers in the

vector
● Try it on some examples

>> odd_count([1 2 3 4])
>> odd_count([-12 -9 -7 -5 1 0 6])

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160

