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perform uses the chosen network’s default performance function, in this case 
net1.performFcn, i.e., the network’s error function. In this case, the network is using 
mse, or the ‘Mean squared error’. To calculate the MSE, the output for each input pattern 
is subtracted from the target output. These differences are then squared, added up, and then
divided by the total number of outputs to get the MSE. The MSE is one way of measuring 
how different the actual output is from the target output.

MSE = 0.0479

MAE (mean absolute error) = 0

MAE = 0; MSE = 0

The perceptron classified all the words correctly.

The perceptron performed 3 iterations.

MAE=MSE=0.1667

‘dolphin’: the only input it has in the 16 selected features, ‘beh_-_eats’, was weighted 0 
(which makes sense, since all animals eat, and therefore its distribution should not be 
correlated with being a bird or mammal), so its Σxiwi=0 (where x=input and w=weight).
‘platypus’: the only feature it has in the table is ‘has a beak’, which is normally associated 
with birds, so it makes sense for it to be grouped with birds rather than mammals, as 
usually this is a good distinctive feature for identifying birds.
‘raccoon’ and ‘beaver’: Both have one feature weighted 0 (‘is_small’ and ‘is_brown’ 
respectively), which gives rise to the same problem as ‘beh_-_eats’ for ‘dolphin’. The 
non-zero weighted feature they share is ‘has_a_tail’ , and as all the animals in the input 
have a tail, this should not be correlated with either birds or mammals.
‘bat’: the two rated features are ‘has_fur’ and ‘beh_-_flies’. The ‘has_fur’ is negatively 
weighted and ‘beh_-_flies’ positively weighted (since it is a feature that is very correlated 
with birds when comparing birds and mammals), but the product of the input and weight 
for ‘beh_-_flies’ is greater than the product of the input and weight of ‘has_fur’ is small.

MSE(training) = 0.018609
MSE(test) = 0.086455
The neural network miscategorised no training words and only ‘platypus’ and ‘bat’ in the 
test words, performing better than the perceptron. While the MSE for the training data was 
greater than for the perceptron (where it was 0), the neural network still classified all the 
training data correctly. With the test data, the NN only miscategorised two animals (less 
than the perceptron), which were also the hardest two (as explained in 8: both ‘has_a_beak’
and ‘beh_-_flies’ are common characteristics of birds).

Unlike the perceptron, the results are different every time, and the process by which the 
final weights were reached is different, as can be evidenced by the corresponding graphs 
having a variety of patterns (they all shared a negative exponential-shaped curve, but some 
were more steep than others, and some had bumps). In a few iterations, the NN got up to 
two of the training inputs wrong (once ‘peacock and ‘turkey’; once ‘bison’ and once just 
‘turkey’). The performance on test data varied between 2 and 5 wrong (usually including 
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‘platypus’ and ‘bat’). MSE does not seem to be a good measurement of correct 
categorisation, since, as mentioned above, there are cases where the MSE is non-zero and 
yet everything is categorised correctly, and, for example, in one  iteration it had an MSE of 
0.086455 and miscategorised two animals, while in another it had an MSE of 0.078141 an 
miscategorised four. This shows that for a NN, the “error” is not always correlated with 
mistakes in categorisation, which is unintuitive. 

Changing the parameters individually varied in amount of effect: changing the hidden 
layers and units did little for the most part (but changing the number of units per layer to a
low number, e.g. 1, made the NN perform worse no matter how many hidden layers there 
were, and a high number, e.g. ≥100, slightly improved it, especially in terms of the training
examples); changing the learning rate mostly influenced the initial learning speed (though
for very low values, i.e. <0.01, the 1000 iterations is not enough to learn enough to 
categorise properly); changing the stopping criterion made the NN more or less accurate 
with its categorisations (for high values, many miscategorisations, and below a certain 
level they performed as if it had been set to 0).

A high LR and SC (stopping criterion) leads to very unpredictable results with a lot of 
miscategorisation, and a high LR makes any network with hidden units less effective at 
categorisation.

Best Paramaters: A high number of units and/or layers does make it less likely for the 
training input to be miscategorised (as long as the LR is ≤0.1, and as mentioned above, the 
SC should be 0), but it does not seem like the categorisation of test input can be improved 
much compared to the default, though with the aforementioned parameters, there may be a 
slight improvement.
Running a network with lr = 0, hidLayerSpec = [100] and goal = 0 
produced the best results, never miscategorising more than 3 animals (including ‘bat’ and 
‘platypus’).


