
Assignment 1

1

2

3

4

5

6

7

8

9

10

perform uses the chosen network’s default performance function, in this case
net1.performFcn, i.e., the network’s error function. In this case, the network is using
mse, or the ‘Mean squared error’. To calculate the MSE, the output for each input pattern
is subtracted from the target output. These differences are then squared, added up, and then
divided by the total number of outputs to get the MSE. The MSE is one way of measuring
how different the actual output is from the target output.

MSE = 0.0479

MAE (mean absolute error) = 0

MAE = 0; MSE = 0

The perceptron classified all the words correctly.

The perceptron performed 3 iterations.

MAE=MSE=0.1667

‘dolphin’: the only input it has in the 16 selected features, ‘beh_-_eats’, was weighted 0
(which makes sense, since all animals eat, and therefore its distribution should not be
correlated with being a bird or mammal), so its Σxiwi=0 (where x=input and w=weight).
‘platypus’: the only feature it has in the table is ‘has a beak’, which is normally associated
with birds, so it makes sense for it to be grouped with birds rather than mammals, as
usually this is a good distinctive feature for identifying birds.
‘raccoon’ and ‘beaver’: Both have one feature weighted 0 (‘is_small’ and ‘is_brown’
respectively), which gives rise to the same problem as ‘beh_-_eats’ for ‘dolphin’. The
non-zero weighted feature they share is ‘has_a_tail’ , and as all the animals in the input
have a tail, this should not be correlated with either birds or mammals.
‘bat’: the two rated features are ‘has_fur’ and ‘beh_-_flies’. The ‘has_fur’ is negatively
weighted and ‘beh_-_flies’ positively weighted (since it is a feature that is very correlated
with birds when comparing birds and mammals), but the product of the input and weight
for ‘beh_-_flies’ is greater than the product of the input and weight of ‘has_fur’ is small.

MSE(training) = 0.018609
MSE(test) = 0.086455
The neural network miscategorised no training words and only ‘platypus’ and ‘bat’ in the
test words, performing better than the perceptron. While the MSE for the training data was
greater than for the perceptron (where it was 0), the neural network still classified all the
training data correctly. With the test data, the NN only miscategorised two animals (less
than the perceptron), which were also the hardest two (as explained in 8: both ‘has_a_beak’
and ‘beh_-_flies’ are common characteristics of birds).

Unlike the perceptron, the results are different every time, and the process by which the
final weights were reached is different, as can be evidenced by the corresponding graphs
having a variety of patterns (they all shared a negative exponential-shaped curve, but some
were more steep than others, and some had bumps). In a few iterations, the NN got up to
two of the training inputs wrong (once ‘peacock and ‘turkey’; once ‘bison’ and once just
‘turkey’). The performance on test data varied between 2 and 5 wrong (usually including

11

‘platypus’ and ‘bat’). MSE does not seem to be a good measurement of correct
categorisation, since, as mentioned above, there are cases where the MSE is non-zero and
yet everything is categorised correctly, and, for example, in one iteration it had an MSE of
0.086455 and miscategorised two animals, while in another it had an MSE of 0.078141 an
miscategorised four. This shows that for a NN, the “error” is not always correlated with
mistakes in categorisation, which is unintuitive.

Changing the parameters individually varied in amount of effect: changing the hidden
layers and units did little for the most part (but changing the number of units per layer to a
low number, e.g. 1, made the NN perform worse no matter how many hidden layers there
were, and a high number, e.g. ≥100, slightly improved it, especially in terms of the training
examples); changing the learning rate mostly influenced the initial learning speed (though
for very low values, i.e. <0.01, the 1000 iterations is not enough to learn enough to
categorise properly); changing the stopping criterion made the NN more or less accurate
with its categorisations (for high values, many miscategorisations, and below a certain
level they performed as if it had been set to 0).

A high LR and SC (stopping criterion) leads to very unpredictable results with a lot of
miscategorisation, and a high LR makes any network with hidden units less effective at
categorisation.

Best Paramaters: A high number of units and/or layers does make it less likely for the
training input to be miscategorised (as long as the LR is ≤0.1, and as mentioned above, the
SC should be 0), but it does not seem like the categorisation of test input can be improved
much compared to the default, though with the aforementioned parameters, there may be a
slight improvement.
Running a network with lr = 0, hidLayerSpec = [100] and goal = 0
produced the best results, never miscategorising more than 3 animals (including ‘bat’ and
‘platypus’).

