Assignment 1: Perceptrons and Neural
Networks

Warm Up

. The perform function in MATLAB uses the mean squared error function,
which takes the squares of each of the errors (the difference between
each element of the set of inputs to its respective element in the set of
target values), and averages the results.

. The error of the trained network netl is 0.0479.

. By using

perc= perceptron ();
perform (perc, target ,y)

MATLAB computes the error of this newly trained perceptron as 0.1712.

A Perceptron for Mammals and Birds

. After training the perceptron perc birds on the 40 elements of the
input, each with 16 features, and using the perform function, MATLAB
computes that there no categorization error.

. As there is no error, the perceptron correctly differentiates between all
the birds and mammals included in the training examples.

1



6. The perceptron only did 3 iterations over the training data.

7. Using the test data as an input, the perceptron has a mean-squared-
error of 0.1667.

8. The perceptron failed to correctly identify

e beaver
e raccoon
dolphin

platypus
e bat

By looking at the weights the perceptron has learned to operate on
the McRae functions, we can examine why it has made some of these
mistakes. For the beaver, raccoon, dolphin and platypus, it is mainly
a case of too few defining features. Both the raccoon and beaver had
several people assign the ‘has a tail’ feature, which was weighted in
favour of being categorised a bird, and their only other assigned fea-
tures (‘is brown’ and ‘is small’ respectively) were weighted zero by the
perceptron.

A somewhat similar problem occurred with the dolphin and the platy-
pus, both of which only had one assigned characteristic, making it
difficult for the perceptron to categorise them. In the case of the bat,
it is clear to see that it shares many of the characteristics typically
assigned to birds- it flies, has wings, and is small- this is a case where
a linear separation is difficult if not impossible.

A Neural Network for Mammals and Birds

9. After training the neural network net1 on the training data, it reports
a classification error of 0.0177, which is a higher error than the percep-
tron, which had no error on the training data.

The results of applying the neural network on the test data, however,
are far better to the results we found with the perceptron- an error value



10.

11.

of 0.0598 and only two incorrectly categorized animals- the whale and
the bat.

By doing 10 iterations of the training and performance of net1, we can
see a clear pattern emerge in the graphs created. Although the initial
error value of netl on the training data varies, the final error after doing
1000 iterations on the training data lies in the range [0.010,0.025],
as the neural network analyses the test data, its performance tends
improve rapidly at first before reaching a horizontal tangent at it’s
final error, although in some cases it has a local maximum value where
the network creates more errors before improving.

The error value on the test data varies quite a lot with a range of
approximately [0.0100,0.1350], and with between 2 and 5 incorrectly
categorised elements.

By adjusting the learning rate, the number of hidden layers and their
respective sizes, and the stopping criterion of the training for the neural
network netl, we can find the optimum values of each to minimise error
in both the training and test sets.

Increasing the learning rate has a significant impact on the training
error value, however it neglects to vastly improve test error values, and
2 or 3 miscategorisations are made with each iteration. By adding
the line netl.trainParam.lr =1; we set the learning rate to 1. The
training error rate is reduced to approximately 1 x 107, and the testing
error value averaging 0.07.

Adding and removing hidden layers has a startling effect on both the
training and test data error values. Setting 2 hidden layers of 1 unit
each, for example, often increases both error values to 0.25, with up to
14 incorrectly categorised elements in each set.

At best, adding more hidden layers and units within those networks
kept the error values at the same level as before, but at worst the
added layers made the errors unpredictable, and caused a large number
of mistakes to be made. By testing different values, I found that the
best compromise was using the values:

numHidLayers = 1;
hidLayerSpec = [3];
netl = create_simple_network (hidLayerSpec);

3



which left the training error untouched, and caused the testing error
value to stabilise and approch 0.070, with both platypus and bat emerg-
ing as incorrectly categorised in every iteration.

By adding a stopping criterion of anything greater than 1 x 1075, we
would stop the neural network from continuing the training after a
smaller amount of iterations, and thereby increase the overall error
value on both the training and test data sets. It is therefore in our best
interest to leave this figure as low as possible. In this case, I chose to
simply use: netl.trainParam.goal = 0.00001;



