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Recent data show that the ventral premotor cortex in both
humans and monkeys has motor and cognitive functions.
The cognitive functions include space perception, action
understanding and imitation. The data also show a clear
functional homology between monkey area F5 and human
area 44. Preliminary evidence suggests that the ventral 
part of the lateral premotor cortex in humans may
correspond to monkey area F4. A tentative map of the
human lateral premotor areas founded on the reviewed
evidence is presented.
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Abbreviations
AIP anterior intraparietal area
dPM dorsal premotor area
FEF frontal eye field
fMRI functional magnetic resonance imaging
RFs receptive fields
SII secondary somatosensory cortex
VIP ventral intraparietal area
vPM ventral premotor area

Introduction
The premotor cortex of the monkey is typically subdivided
into two large sectors: the ventral (vPM) and the dorsal
(dPM) premotor cortex. In turn, each of these sectors is
formed by two areas, one located rostrally and the other
caudally (Figure 1a). No distinction between dorsal and
ventral premotor cortex has classically been made in
humans, the cortex lying on the cortical lateral surface
being dubbed lateral area 6. A distinction, however,
between rostral and caudal premotor sectors is apparent in
humans. The dorsal part of lateral area 6 consists of two
areas: 6aα and 6aβ [1]. They are indicated in light pink and
blue, respectively, in Figure 1b. Two areas similarly form
the ventral sector of lateral area 6: 6aα and area 44. They
are indicated in red and dark pink, respectively, in
Figure 1b. The homology between area 44 in humans and
the rostral part of vPM (or F5) in monkeys was noted 
by Von Bonin and Bailey [2] and recently confirmed by
Petrides and Pandya [3].

Here, we review recent monkey and human studies that
address the functional role of ventral sectors of premotor
cortex (area 44 included) in action organization, motor
imagery, and action understanding. Studies on language
are not reviewed.

Caudal ventral premotor cortex in monkeys
and humans
Caudal ventral premotor cortex in monkeys: F4
Area F4 is the frontal node of a cortical circuit that includes
the ventral intraparietal area (VIP), the intraparietal sector
of area PE (PEip), and the secondary somatosensory cortex
(SII) [4•]. This circuit transforms specific positions in the
space around the monkey (peripersonal space) into arm,
neck, and face/mouth movements. This circuit is also
involved in space perception [5].

F4 neurons discharge according to specific body part
movements. In addition, most of these neurons respond to
somatosensory stimuli. Some also respond to visual and
auditory stimuli [6–9]. F4 visual receptive fields (RFs) 
are located around the tactile RF and, typically, extend 
in depth up to ∼30 cm from it [6–8]. Their position is 
independent of eye position and is anchored to a particular
body part [10]. When the body part is moved, the RF
moves with it [8]. Recent data showed that F4 contains
representations of wrist movements directed to specific
space positions [11•]. Interestingly, most F4 neurons that
respond to wrist movements code actions in extrinsic 
(spatial) coordinates, rather than in intrinsic coordinates, as
previously described for F1 [12]. This study [11•] elegantly
confirmed the notion that area F4 codes goal-directed
actions, the goal being represented by spatial locations.

Lesion studies
Ablation of F4 (including portions of F5) produces hemi-
spatial neglect in the monkey, as well as reaching deficits.
The neglect is circumscribed to peripersonal space [13].
Selective neglect for peripersonal space may occur also in
humans [14]. A recent study by Berti and Frassinetti [15•]
confirmed this finding. They described a patient who,
after a right hemisphere stroke, exhibited selective
peripersonal neglect. The near/far dissociation was clear in
line bisection tasks that were impaired in the near space,
but virtually normal in the far space. This was observed
when the patient bisected lines using a light projection
pen. However, when the patient acted on far stimuli using
a stick, neglect reappeared. Berti and Frassinetti [15•]
explained this result by referring to neurophysiological
data obtained by Iriki et al. [16••], who showed that the use
of a tool extends the monkey peripersonal space. In the
case of the patient, the use of a stick extended his periper-
sonal space so as to include all the space between the body
and the stimulus. As a consequence, far space was
remapped as near space and the neglect reappeared.
Maravita et al. [17] and Farnè and Ladavas [18] reported
similar findings.

Prompted by the observation that, in the monkey, F4 
visual RFs move with the body part to which they are
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anchored, a series of studies investigated cross-modal
extinction in patients with mild neglect [19,20]. These
experiments showed that the presentation of a visual stimulus
near the patients’ ipsilesional (normal) arm or hemiface
caused an extinction of a tactile stimulus applied on the
patients’ contralesional (neglected) hand. However, when
the visual stimulus was presented in the identical spatial
location, but the body part was moved to another position,
the extinguishing effect of vision was not observed or was
markedly reduced. Peripersonal cross-modal extinction was
also recently observed when the ipsilesional visual stimulus
was presented near the patient’s hand seen in a mirror [21•].

The lesions causing neglect in humans are always very large.
Thus, although data supporting the existence of separate

systems for peripersonal and extrapersonal space are very
robust, the localization of the human homologue of area F4
is difficult to determine on the basis of lesion data alone. 

Caudal ventral premotor cortex in humans
Brain imaging experiments, in which the anatomical local-
ization of arm movements was studied, were unsuccessful
in localizing F4 in humans. The results showed only a
strong activation of the primary motor cortex extending to
the dorsal part of area 6 (stereotaxic coordinates z=+52 and
above, see [22–25]). Note, however, that these studies used
rather simple motor tasks not requiring the spatial transfor-
mations that characterize the activity of F4 neurons in
monkeys. Furthermore, head and combined head/mouth
movements that should also be represented in the human
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Figure 1

Ventral premotor cortex in monkeys and
humans. (a) Lateral view of the monkey brain
showing the cytoarchitectonic parcellation of
the motor cortex and the posterior parietal
cortex. Matching colors indicate each motor
area and its corresponding parietal input (area
VIP, buried inside IP, is not shown). The motor
area F7, receiving its main input from the
prefrontal lobe, is indicated in blue. Areas F2
and F7 are often referred to as dPM; areas F4
and F5 form the vPM. AI, inferior arcuate
sulcus; AS, superior arcuate sulcus; C, central
sulcus; DLPFd, dorsolateral prefrontal cortex
dorsal part; DLPFv, dorsolateral prefrontal
cortex ventral part; IP, intraparietal sulcus;
L, lateral fissure; Lu, lunate sulcus; P, principal
sulcus; SI, primary somatosensory cortex;
ST, superior temporal sulcus. Modified with
permission from [4•]. (b) Lateral view of the
human brain showing the cytoarchitectonic
parcellation of Brodmann and the basal lines
(thick lines) depicted by Talairach and
Tournoux [50]. Thin horizontal lines indicate
z values. Colored regions indicate: dPM 6aα,
light pink; 6aβ (predPM [51•]), blue;
vPM (ventral area 6), red; area 44, dark pink;
FEF, green. Modified with permission from [50].
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homologue of F4 were never tested, due to the technical
limitations of brain imaging techniques.

However, experiments using sensory stimulation suggest
that an area homologous to monkey F4 exists in humans.
Particularly interesting in this respect is a recent 
functional magnetic resonance imaging (fMRI) study [26••].
Bremmer et al. [26••] attempted to localize the multimodal
tactile, auditory and visual cortical areas in humans. Tactile
stimuli (applied on the forehead), moving visual stimuli,
and auditory stimuli producing the illusion of sound 
movement were presented to human subjects. Multimodal
convergence was found in three sites: the depth of the
intraparietal sulcus, SII, and the vPM at the border of 
ventral areas 6 and 44. The authors propose that the active
vPM site probably corresponds to the monkey F4 sector
where head movements are represented. Activation of
ventral area 6 and area 44 was also recently found in a task
in which participants had to judge the position of visual
and somatosensory stimuli relative to their body midline
[27]. The authors of this study suggested that these two
areas intervene in cognitive spatial tasks.

Another experiment that supports the existence of a
human homologue of F4 is that of Buccino et al. [28••].
Here, participants were asked to observe goal-related foot,
hand and mouth actions. The observation of arm reaching
to grasp actions led to the activation of two premotor foci,
one located in area 44 (see below), and one located ventral
(x=–56; y=–4; z=+44) to the activations observed during
the execution of intransitive arm movements.

Summing up, it appears that humans may possess an area
homologous to monkey area F4 (see Figure 1b). In this
area, arm reaching movements are located dorsally [28••],
whereas head movements are located ventrally [26••].
Note that this proposed homology is in accord with the
location of the frontal eye field (FEF) in the two species.
In monkeys, FEF is located immediately rostral to area F4
(see Figure 1a). In humans, the z coordinates of FEF range
between +44 and +51 [29]. Our suggestion is that the
upper limit of FEF in humans marks the border between
vPM and dPM (see Figure 1b).

Rostral ventral premotor cortex in monkeys
and humans
Area F5 forms the rostral part of the monkey vPM. It consists
of two main sectors: one, F5c, located on the dorsal convexity,
the other, F5ab, on the posterior bank of the inferior arcuate
sulcus. Both sectors receive afferents from SII and area PF of
the parietal lobe. In addition, F5ab is the selective target 
of the anterior intraparietal area (AIP). Area F5 contains 
representations of hand and mouth movements. The two 
representations overlap to a considerable extent [4•,5].

Canonical and mirror neurons
Recordings from single neurons in a natural context were
particularly important for our understanding of the function

of F5. These studies showed that most F5 neurons code
specific actions, rather than the single movements that form
them. F5 neurons were thus subdivided into several action
classes, for example, ‘grasping’, ‘holding’ or ‘tearing’ neurons
[30]. Many F5 neurons respond to the presentation of 
visual stimuli (visuomotor neurons). Some of these respond
to the presentation of graspable objects and were named
‘canonical’ F5 neurons (see [4•] for review). Others 
discharge when the monkey observes another individual
making an action in front of it. These neurons were named
F5 ‘mirror’ neurons [31,32]. Canonical neurons are mostly
located in F5ab, whereas mirror neurons are found 
essentially in F5c. 

On the basis of the functional properties of canonical F5
neurons, F5 was proposed to play a crucial role in trans-
forming the visual properties of three-dimensional objects
into hand shapes appropriate to interact with them. Recent
inactivation experiments directly tested this proposal
[33•]. Monkeys were trained to reach for and grasp 
geometric solids of different size, shape and orientation. In
separate sessions, F5ab, F5c and the hand field of F1 were
reversibly inactivated. The results showed that after 
inactivation of F5ab (the sector where canonical neurons
are located), the hand shaping that relies on the visual
properties of the objects was markedly impaired. The
monkeys were able to grasp the objects, but only after 
corrections made under tactile control. 

It has been suggested that mirror neurons might be
involved in the understanding of actions made by others
[31,32]. Usually an action is recognized even when its final
part is out of vision. A recent study investigated whether
mirror neurons could form the basis of this capacity [34••].
The experiment consisted of two conditions. In one, the
monkey was shown a fully visible action directed towards
an object. In the other, the same action was presented, but
with its final, critical part (hand–object interaction) hidden
behind a screen. The results showed that the majority of
mirror neurons responded also in the hidden condition. In
control experiments, the monkey saw the beginning of 
the same actions, but also knew that nothing was behind
the screen. No response was obtained in this condition.
These results clearly support the notion that mirror 
neurons mediate action understanding.

F5 and area 44 respond to hand actions
As mentioned above, cytoarchitectonically, the most likely
human homologue of F5 is area 44 [2,3]. Functionally,
however, whereas F5 has both a representation of hand
and mouth actions [30], area 44 has been classically 
considered to be a speech area. Recent brain imaging
experiments, by confirming previous indications (e.g. [35]),
demonstrated beyond any doubt that area 44 is also related
to hand actions [36,37•,38,39•,40,41•].

Binkofski et al. [36] asked volunteers to manipulate multi-
faceted complex objects in one condition and a smooth
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sphere in another. The complex manipulation task activated
area 44 (–52, +8, +28), an area inside the intraparietal 
sulcus, and SII. This cortical network closely corresponds
to the cortical circuit (AIP, SII, F5) for manipulation in the
monkey [4•]. Further support for the functional homology
between F5 and area 44 comes from the study of Ehrsson
et al. [37•], in which they compared the cortical areas
involved in different types of grips. They found that the
focus of representation of precision grip is located in area
44 (–56, +12, +32). This finding fits with monkey data
showing that precision grip is largely represented in F5,
whereas only few F5 neurons discharge during whole hand
prehension [30].

Area 44 motor representation is not only activated by actual
movement execution, but also by imaging hand actions
[42,43] or by hand mental rotation [44]. Gerardin et al. [39•]
showed that both transitive hand actions and the imagination
of intransitive finger movements activate area 44 (–54, +12,
+12). The activation was stronger during imagery than 
during actual execution. The prolonged effort that imaging
a movement requires in comparison with movement exe-
cution was probably the reason for this stronger activation.

Object observation
Several brain imaging studies have shown that naming
tools, generating action words in response to tool observation,
and imaging manipulating objects determine the activation
of area 44 (see [45] for review). Recently, Chao and Martin
[46••] showed that even the mere observation of tools 
activates the cortex within the precentral sulcus, most 
likely in area 44 (–42, +6, +23). In addition, activation was
also found in the left inferior parietal lobule, in an area 
corresponding to the intraparietal sulcus. Control conditions,
in which pictures of animals, faces and houses were 
presented, showed that activation in both these regions
was stronger with tools than with the other stimuli. These
data show that, as in monkeys [4•], observation of an object
without other requirements activates a parietal–premotor
circuit formed by area AIP and area 44 (the most likely
human homologue of area F5).

In another very recent fMRI study [47•], a parietal–premotor
circuit largely overlapping that described by Chao and
Martin [46••] was found to be active during observation of
bidimensional objects. The activation was particularly
strong when the task required object-related attention.

Action observation
A further condition that activates area 44 is action observation
([28••,40,48], see also [49•]). Iacoboni et al. [40] tested volun-
teers while they observed a finger movement, a static finger,
or a cross (observation conditions), and when they were
required to move their finger in response to these stimuli
(observation/execution conditions). The results showed that,
in the task in which participants had to move the finger in
response to the observation of a similar movement (imita-
tion), the activation of area 44 (–50, +12, +12) was stronger

than in all other conditions. These findings demonstrate that
an action observation/execution matching system exists in
humans, and is used for imitation. Similar results were
obtained independently by Nishitani and Hari [41•] using
magnetoencephalography.

Activation of area 44 during the observation of hand actions
could be interpreted as reflecting verbal mediation. If this
interpretation is correct, area 44 should be active regardless
of the type of observed action and the effector used. On the
other hand, if activation of area 44 reflects a specific local-
ization of hand actions, the activation should be absent
when observing actions of other effectors, such as the foot.
A recent fMRI experiment [28••] showed that during the
observation of hand actions there was an activation in area
44 (–64, +12, +20) and in ventral area 6 (see above). Foot
action observation determined the activation of a dorsal site
in area 6 (–32, –8, +64), but no activation of area 44. These
results demonstrate that action observation activates soma-
totopically organized sectors of the premotor cortex, and
that verbal mediation is not responsible for the activation of
area 44 during hand and mouth action observation.

Conclusions
The data reviewed here indicate that the vPM has both
motor and cognitive functions. The motor functions transform
the intrinsic properties of objects into hand actions and 
spatial locations into head and arm actions. The cognitive
functions include space perception, action understanding
and imitation.

There is also convincing evidence of a functional homology
between monkey areas F5 and human area 44. Fewer data
are available to establish the location of the possible
human homologue of area F4. Preliminary evidence 
suggests that it is located in the ventral sector of area 6,
approximately ventral to z=+50.
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