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Research suggests that by the age of five, children have

extensive causal knowledge, in the form of intuitive

theories. The crucial question for developmental cogni-

tive science is how young children are able to learn

causal structure from evidence. Recently, researchers in

computer science and statistics have developed rep-

resentations (causal Bayes nets) and learning algorithms

to infer causal structure from evidence. Here we explore

evidence suggesting that infants and children have the

prerequisites for making causal inferences consistent

with causal Bayes net learning algorithms. Specifically,

we look at infants and children’s ability to learn from

evidence in the form of conditional probabilities, inter-

ventions and combinations of the two.

Over the past 30 years we have discovered an enormous
amount about what children know and when they know it.
In particular, young children, and even infants, seem to
have intuitive theories of the physical, biological and
psychological world (for recent reviews see [1–3]). These
theories, like scientific theories, are complex, coherent,
abstract representations of the causal structure of the
world. Even the youngest preschoolers can use these
intuitive theories to make causal predictions, provide
causal explanations, and reason about causation counter-
factually [4–7]. Moreover, both studies of natural variation
in relevant experiences, and explicit training studies,
demonstrate that children’s intuitive theories change in
response to evidence [8–11].

But the real question for developmental cognitive
science is not so much what children know and when
they know it, but how children’s theories develop and
change and why children’s theories converge towards
accurate descriptions of the world. It is all very well to
suggest that children’s learning mechanisms are analo-
gous to scientific theory-formation. However, what we
would really like is a more precise specification of the
mechanisms that underlie learning in both scientists and
children.

One such candidate learning mechanism has recently
attracted considerable interest within the fields of com-
puter science, philosophy and psychology. The causal
Bayes net account of causal knowledge and learning
provides computational learning procedures that allow
abstract, coherent, structured representations to be
derived from patterns of evidence, given certain
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assumptions [12–15]. One advantage of this formal
learning account is that it specifies, with some precision,
the kinds of abilities that must be in place in order for
learning to occur. We will give an overview of the causal
Bayes net formalism and then outline recent research
regarding two foundational types of abilities that would
support causal learning within this formal account. Some
aspects of these abilities have already been investigated
empirically, but we will also point to crucial questions that
have yet to be explored.
Causal Bayes nets

Causal directed graphical models, or causal Bayes nets,
have been developed in the philosophy of science and
statistical literature over the last 15 years [12–15]. The
models provide a formal account of a kind of inductive
inference that is particularly important in scientific
theory-formation. Scientists infer causal structure by
observing the patterns of conditional probability among
events (as in statistical analysis) by examining the
consequences of interventions (as in experiments) or,
usually, by combining the two types of evidence. Causal
Bayes nets provide a mathematical account of these
inferences and so a kind of inductive causal logic.

Causal relations are represented by directed acyclic
graphs. The graphs consist of variables, representing
types of events or states of the world, and directed edges
(arrows) representing the causal relations between those
variables (see Figure 1). The structure of a causal graph
constrains the probability of the variables in that graph.
In particular, it constrains the CONDITIONAL INDEPENDENCIES

among those variables (see Glossary). These constraints
can be captured by a single formal assumption: the CAUSAL

MARKOV ASSUMPTION. The causal Markov assumption
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Figure 1. A causal Bayes net. R, S, W, X, Y, Z represent variables and the arrows

represent causal relations between those variables.
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Glossary

Assumptions
The causal Markov assumption: For any variable X in a causal graph, X is

independent of all other variables in the graph (except for its own direct and

indirect effects) conditional on its own direct causes.

The faithfulness assumption: In the joint distribution on the variables in the

graph, all conditional independencies are consequences of the Markov

assumption applied to the graph.

The intervention assumption: A variable I is an intervention on a variable X in a

causal graph if and only if: (1) I is exogenous (that is, is not caused by any other

variables in the graph); (2) directly fixes the value of X to x; and (3) does not

affect the values of any other variables in the graph except through its influence

on X.

Definitions of independence and conditional independence
Conditional independence: Two variables are independent in probability

conditional on some third variable Z if and only if P(x, yjz)ZP(xjz)*P(yjz).

That is for every value x,y, and z of X, Y and Z the probability of x and y given z

equals the probability of x given z multiplied by the probability of y given z.

Unconditional independence: Two variables X and Y are unconditionally

independent in probability if and only if for every value x of X and y of Y the

probability of x and y occurring together equals the unconditional probability of

xmultiplied by the unconditional probability of y. That is P(x and y)ZP(x)*P(y).
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specifies that, given a particular causal structure, only
some patterns of conditional independence will occur
among the variables. Therefore, we can use knowledge of
the causal graph to predict the patterns of conditional
probability.

The constraints also allow us to determine what will
happen when we intervene from outside to change the
value of a particular variable. When two variables are
genuinely related in a causal way then, holding other
variables constant, intervening to change the value of one
variable should change the value of the other. Indeed,
philosophers have recently argued that this is just what it
means for two variables to be causally related [16,17]. If
we assume a particular formal definition of intervention
(the INTERVENTION ASSUMPTION), we can use causal Bayes
nets to predict the effects of interventions on a causal
structure. A central aspect of causal Bayes nets, indeed
the thing that makes them causal, is that they allow us to
freely go back and forth from evidence derived from
observations to inferences about interventions and vice-
versa.

We can also use the formalism to work backwards and
learn the causal graph from patterns of conditional
probability and intervention. This type of learning
requires a third assumption: the FAITHFULNESS ASSUMPTION.
Given the faithfulness assumption, it is possible to infer
complex causal structure from patterns of conditional
dependence and independence and intervention. In some
cases, it is also possible to accurately infer the existence
and even the structure of new unobserved variables that
are common causes of the observed variables [18,19].
Computationally tractable learning algorithms have been
designed to accomplish these tasks and have been
extensively applied in a range of disciplines [e.g.,20,21].

Recently, several investigators have suggested that
adults’ causal knowledge might involve implicit forms of
Bayes nets representations and learning algorithms
[22–27]. However, adults have extensive experience and
often, explicit tuition in causal inference. If young children
could use versions of Bayes nets assumptions and
computations they would have a powerful tool for making
www.sciencedirect.com
causal inferences. They might, at least in principle, use
such methods to uncover the kind of causal structure
involved in everyday intuitive theories. [28,29] However,
learning of the sort represented by the causal Bayes net
formalism requires: (i) the ability to learn from conditional
probabilities, (ii) the ability to learn from interventions,
and (iii) the ability to combine these two types of learning.
Is there any evidence that young children have these
prerequisite abilities?

Learning from conditional probabilities

The basic data for Bayes net inferences are judgments
about the conditional independence of variables, judg-
ments that require computing the conditional probabil-
ities of values of those variables. There has recently been a
great deal of work suggesting that, given non-causal data,
such probabilities are computed spontaneously even by
infants [30]. One such finding showed that eight-month-
old infants could calculate the conditional probabilities of
linguistic syllables in an artificial language [31]. Since
then the experiments have been replicated with non-
linguistic tones [32], with simultaneous visual stimuli
[33], and with temporal sequences of visual stimuli [34].
These findings suggest that conditional probability infor-
mation is available to infants and may be translated into
more abstract representations.

There are still, however, many unanswered questions.
Previous experiments have pitted conditional probabil-
ities of 1 against those of less than one (usually 0.33), and
shown that infants can distinguish these levels of
probability. We do not know if infants can discriminate
among finer degrees of conditional probability. Moreover,
we do not know if infants can calculate CONDITIONAL

DEPENDENCE and INDEPENDENCE, that is, whether they can
tell that one stimulus is dependent on another only
conditional on some other stimulus (a kind of conditional
conditional probability). Finally, we do not know whether
infants’ ability to track the conditional probability of non-
causal stimuli in these domains extends to an ability to
track the conditional probability of candidate causes and
effects. However, studies answering these questions
should be feasible with the existing techniques.

We do know more about conditional probability judg-
ments in young children. Clearly, young children cannot
explicitly and consciously relate conditional probability to
causation. However, we can show children novel causal
relations among novel types of events, for example, by
presenting them with a newly-invented machine. We give
children information about the conditional probabilities of
those events and see what causal conclusions they draw.

Two-and-a-half-year-olds can discriminate conditional
independence and dependence, that is, conditional con-
ditional probabilities, even with controls for frequency,
and can use that information to make judgments about
causation [35]. In these experiments children saw various
combinations of objects placed on a machine, which did or
did not light up. The children were told that ‘blickets make
the machine go’ and were asked to identify which objects
were blickets. For example, children saw the sequence of
events depicted in Figure 2a, and the control sequence
depicted in Figure 2b. In Figure 2a the effect E (the
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(a) One-cause condition

(b) Two-cause condition

Both objects activate
the detector

(demonstrated twice)

Children are asked if
each one is a blicket

Object A activates the
detector by itself

Object B does not
activate the detector

by itself

Object A activates the
detector by itself

(demonstrated three
times)

Both objects activate
the detector

Both objects activate
the detector

Children are asked if
each is a blicket

Children are asked if
each is a blicket

Object A does not
activate the detector

by itself

Object A activates the
detector by itself

Object B does not
activate the detector

by itself
(demonstrated once)

Object B activates the
detector by itself

(demonstrated twice)

Children are asked
if each one is a blicket

(c) Inference condition

(d) Backward blocking condition

    

Figure 2. Screening-off and backwards blocking. In the screening-off procedure [35], children are presented with two conditions: (a) In the one-cause condition, only object A

causes the machine to go; (b) In the control two-cause condition, both A and B cause the the machine to go. In the backwards-blocking procedure [36], there are also two

conditions: (c) In the inference condition only Bmakes themachine go; (d) In backwards blocking, Amakes themachine go, and Bmay or may notmake themachine go. (See

text for results.)
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detector lighting up) is correlated with both object A and
object B. However, E is independent in probability of
B conditional on A, but E remains dependent on
A conditional on B. In Figure 2b each block activates the
detector the same number of times as in Figure 2a but the
conditional independence patterns are the same for A and
B. Children consistently choose A rather than B as the
blicket, in the first condition, and choose equally between
the two blocks in the second condition. Assuming that the
causal relations are deterministic, generative and non-
interactive, a Bayes net account would generate a similar
conclusion.

Moreover, in similar experiments, four-year-old chil-
dren used principles of Bayesian inference to combine
prior probability information with information about the
www.sciencedirect.com
conditional probability of events. [36]. For example,
suppose children see the sequence of events in Figures
2c and 2d. On a Bayes net account, the causal structure of
2c is clear: A does not cause the effect and B does, and the
children also say this. However, the causal structure of 2d
is ambiguous, it could be that A and B both make the
detector go, but it is also possible that only A does. Indeed,
children give both types of responses. However, we can
increase the prior probability of the ‘A only’ structure by
telling the children beforehand that almost none of the
blocks are blickets. Children who are told that blickets are
rare are more likely to choose the ‘A only’ structure – that
is to say that A is a blicket but B is not.

Four-year-olds can also perform even more complex
kinds of reasoning about conditional dependencies, and
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Achoo! Achoo!

Achoo! Achoo! Achoo!

(a) Test

a Control

Figure 3. Screening-off in a biological task [37]. (a) Test condition: children see that the red and yellow flowers together make Monkey sneeze and that the blue and yellow

flowers together make Monkey sneeze, but that the red and blue flowers together do not make Monkey sneeze. (b) Control condition: children see identical frequency

information but each flower is presented singly; the red and blue flower eachmakeMonkey sneeze half the time; the yellow flowermakesMonkey sneeze all the time. In each

condition, children are asked which flower makes the Monkey sneeze. Children correctly choose the yellow flower in the test condition but choose at chance in the frequency

control condition.
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they do so in many domains, biological and psychological
as well as physical. In one experiment children were
shown a monkey puppet and various combinations of
flowers in a vase (see Figure 3). They were told that some
flowers made the monkey sneeze and others didn’t. Then
they were shown the following sequence of events: Flowers
A and B together made monkey sneeze. Flowers A and C
together made monkey sneeze. Flowers B and C together
did not make monkey sneeze. Children correctly con-
cluded that A would make the monkey sneeze by itself, but
B and C would not [37]. In a frequency control condition, in
which flowers B and C made monkey sneeze half the time
and flower C all the time, children chose each of the three
flowers equally often.
Learning from interventions

Conditional probability is one basic type of evidence for
causation. The other basic type of evidence involves
understanding interventions and their consequences.
The technical definition of the INTERVENTION ASSUMPTION

might look formidable but it actually maps well onto our
everyday intuitions about intentional goal-directed
human actions. We assume that such actions are the
result of our freely willed mental intentions, and so
unaffected by the variables they act on (Clause 1). Clause 2
is basic to understanding goal-directed action. When
actions are genuinely goal-directed we can tell whether
our actions are effective: that is whether they determine
the state of the variables we act upon, and we modify the
actions if they are not. Clause 3 is essential to under-
standing means–ends relations. When we act on means to
gain an end we assume that our actions influenced other
variables (our ends) through, and only through, the
influence on the acted-upon variable (the means).

Moreover, we assume that these features of our own
interventions are shared by the interventions of others.
This is an important assumption because it greatly
increases our opportunities for learning about causal
structure – we learn not only from our own actions but also
from the actions of others.
www.sciencedirect.com
Several features of this understanding of intervention
appear to be in place at a very early age. In terms of
Clause 2, infants seem to ‘parse’ sequences of human
actions into meaningful goal-directed units [38,39]. By
around seven months of age, infants understand at least
some particular goals of human action and understand
that goal-directed actions should be understood differently
than interactions between objects [40–42]. For instance, if
infants see a hand reach several times towards a
particular object and the location of the object is changed,
infants look longer when the hand reaches to a new object
in the familiar location (i.e. the goal changes) than the
familiar object in a novel location (i.e. the path changes).
When a stick, rather than a hand, contacts the object,
infants react only to the change in path. By one year,
infants seem to understand even more complex facts about
means–ends relations, relevant to Clause 3. For example,
12–14 month-olds recognize that actors understand
means–ends relations and may take different alternative
routes to obtain an end [43,44].

In terms of Clause 1, by 18 months, infants will ‘read
through’ failed actions to infer the underlying intention of
the actor [45]. When 18-month-olds see another person try
and fail to pull apart an object for example, they will
immediately pull apart the object themselves – something
they will not do if they see a machine perform a similar
action on the object. By two years, children explicitly and
spontaneously explain goal-directed actions as the result
of internally generated mental states, desires or inten-
tions, that are designed to alter the world in particular
ways [7].

Infants also generalize from their own interventions to
those of others and vice-versa. For example, you can train
three-month-old infants to reach for objects by giving
them Velcro mittens that allow them to manipulate objects
they would not otherwise be able to grasp [46]. Infants
who received such training generalized from their own
interventions and were more likely to understand the
directed reaches of others. Conversely, the extensive
literature on early imitation shows that nine-month-old

http://www.sciencedirect.com


Review TRENDS in Cognitive Sciences Vol.8 No.8 August 2004 375
infants who see another person perform a novel interven-
tion (i.e. an experimenter touching the top of a box with
his head to make the box light up) will adopt that
intervention themselves – the babies will put their own
heads on the box [47].
Learning from combinations of conditional probabilities

and interventions

We have seen that infants and young children seem to
conceive of their own and others interventions in a
distinctive way that might support causal learning. The
crucial aspect of causal Bayes nets, however, is that
intervention and conditional probability information can
be coherently combined and inferences can go in both
directions. Animals have at least some forms of the ability
to infer conditional probabilities, and even conditional
independencies, among events – as in the phenomenon of
blocking in classical conditioning [48]. They also have at
least some ability to infer causal relations between their
interventions and the events that follow them, as in
operant conditioning and trial and error learning. How-
ever, there is, at best, only very limited and fragile
evidence of non-human animals’ ability to combine these
two types of learning in a genuinely causal way [49,50].
Why is it that when Pavlov’s dogs associate the bell with
food, they don’t just spontaneously ring the bell when they
are hungry? The animals seem able to associate the bell
ringing with food, and if they are given an opportunity to
act on the bell and that action leads to food, they can
replicate that action. Moreover, there may be some
transfer from operant to classical conditioning. However,
the animals do not seem to go directly from learning novel
conditional independencies to designing a correct novel
intervention. Moreover, surprisingly primates show only a
very limited and fragile ability to learn by directly
imitating the interventions of others, an ability that is
robustly present in one-year-old humans [50].

By contrast, very young children solve causal problems
in a way that suggests just this coordination of observation
and action. Preschool children, for instance, can use
contingencies, including patterns of conditional indepen-
dence, to design novel interventions to solve causal
problems. Three-year-olds in the blicket detector exper-
iments use information about conditional independence to
produce appropriate interventions (such as taking a
Box 1. Questions for future research

Questions about conditional probability
† Can children distinguish only conditional probabilities of 1 and !1

or can they make finer distinctions? Are judgments of conditional

independence possible in infancy?

† How do children get from frequency information to judgments of

conditional probability? How do they deal with the problem of small

sample sizes?

Questions about intervention
† Do children treat only human actions as interventions or can they

recognize ‘natural experiments’?

† Do children understand that actions must fulfill the criteria of the

Intervention Assumption to count as interventions? Do they discount

‘bad’ interventions?

www.sciencedirect.com
particular object off the detector to make it turn off) that
they have never seen or produced before. [35–37].

Even more dramatically, four-year-olds used patterns
of conditional dependence to craft new interventions that
required them to cross domain boundaries, and overturn
earlier knowledge [37]. For example, children were asked
beforehand whether you could make a machine light up by
flicking a switch or by saying ‘Machine, please go’. All of
the children said that flicking the switch would work but
talking to the machine would not. Then the children saw
that the effect was unconditionally dependent on saying
‘Machine, please go’, but was independent of the switch
conditional on the spoken request. When children were
then asked to make the machine stop 75% said ‘Machine,
please stop’.

Most crucially, however, four-year-olds can also com-
bine patterns of conditional dependence and intervention
to infer causal structure and do so in a way that recognizes
the special character of intervention. This kind of
inference is naturally done by Bayes nets and is not a
feature of other accounts of causal reasoning such as
associationist [51,52] or causal power [53] accounts.
Children can use such combinations of information to
identify causal direction (Does X cause Y or does Y
cause X?) and even to infer the existence of unobserved
variables. They can even do so when the relations between
the events are probabilistic rather than deterministic [29].

For example, four-year-olds were shown a ‘puppet
machine’ in which two stylized puppets moved simul-
taneously. They were told that some puppets almost
always, but not always, made others go. In one condition
they saw the experimenter intervene to move puppet X,
and puppet Y also moved simultaneously on five of six
trials. On one trial the experimenter moved X and Y did
not move. In the other condition children simply observed
the puppets move together simultaneously five times, but
on one trial the experimenter intervened to move X and Y
did not move. The children accurately concluded that X
made Y move in the first case, whereas Y made X move in
the second [29].
Conclusion

Although much more research is necessary (e.g. see
Box 1), it seems that infants and young children can
detect patterns of conditional probability, understand the
Questions about causal structure

† Can children use patterns of evidence to discriminate more complex

causal structures (e.g. causal chains versus common causes versus

common effects)? Can they use them to determine parameterizations

of a graph (e.g. the strength of causal links, and whether they are

deterministic, generative, inhibitory or interactive)?

† Can children use patterns of evidence to determine unobserved as

well as observed causal structure, to discover new variables, or split or

merge existing variables?

† How do children integrate spatial and temporal information with

information about conditional probability and intervention?
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nature of their own and others interventions, and to at
least some extent, integrate conditional probability and
intervention information spontaneously and without
reinforcement.

Each of these abilities, by itself, provides a powerful
foundation for learning of several kinds, not just causal
learning. Significantly, for example, in at least one
experiment infants treated the units that emerged from
statistical auditory regularities as English words, that is,
as genuinely linguistic representations that could be
combined with others in a rule-governed way [54]. Infants
might similarly use conditional probabilities of visual
stimuli to segregate scenes into object representations,
which can then be combined in a rule-governed way [55].
Furthermore, understanding and imitating the interven-
tions of others, not only in simple action imitation but in
more complex cases such as taking on the goals of others,
provides infants with powerful tools for learning social
behavior [47].

Recent work on the causal Bayes net formalism,
however, suggests that combining these two types of
learning provides particularly powerful tools for learning
causal structure, of the kind encoded in intuitive theories,
and provides a formal account of how this might be done.
Elements of such learning appear to be in place in infancy,
and these elements are clearly used to learn causal
relations by early childhood.
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