
Introduction to Cognitive Science: Notes

X: Child and Computer Language Development

• Readings for this section: *Gopnik and Schulz 2004; *Zettlemoyer and

Collins 2005.
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Child and Computer Language Development

• The child’s problem is similar to the problem of inducing a treebank grammar,

but a little harder.

– They haveunordered logical forms, not language-specific ordered

derivation trees.

– So they have to work outwhich word(s) go with which element(s) of

logical form, as well as the directionality of the syntactic categories (which

are otherwise universally determined by the semantic typesof the latter).
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Child and Computer Language Development

• Children do not seem to have to deal with a greater amount of error than the

Penn WSJ treebank has (McWhinnie 2005).

– But they may need to deal withsituations which support a number of

logical forms.

– And they need to be able to recover from temporarywrong lexical

assignments.

– And they need to be able to handlelexical ambiguity.
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Computational Accounts

• Siskind (1995, 1996), Villavicencio (2002), and Zettlemoyer and Collins

(2005) offer computational models of this process.

• Both theories make strong assumptions about the association of words with

elements of logical form.

• Both make strong assumptions about universally available parametrically

specified rule- or category- types, the latter in the form of atype hierarchy

• Both deal with noise and homonymy probabilistically.
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Computational Accounts: Zettlemoyer and Collins

• Zettlemoyer and Collins’ algorithm (UAI 2005) allowsany contiguous

substringof the sentence to be a lexical item. For a given logical form,the

learner has to search the cross-product of the substring powerset of the string

with the set of pairs of legal categories with elements of thesubstructure

powerset of the logical form for categories that yield combinatory derivations

that yield the correct logical form.

• Learning is via a log-linear model using lexical entries (only) as features and

gradient descent on their weights, iterating over successive sentences of a

corpus of sentence-logical form pairs.

• We can improve on this by

– Directly generating the parses that UG supports for the sentence-meaning

pair.

– Building a full parsing model (necessary if we are to scale).
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Zettlemoyer and Collins (Contd.)

• The algorithm as presented in 2005 learns only a very small rather

unambiguous fragment of English, hand-labeled with uniquely identified

database queries as logical forms, and an English specific inventory of

possible syntactic category types in lieu of Universal Grammar.

• However, Siskind’s and Villavicencio’s results already tell us that the

algorithm should work with multiple candidate logical forms.

• Similarly, their results show that a universal set of category types can be used

without overwhelming the learner.
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Zettlemoyer and Collins (Contd.)

• All of these models depend on availability to the learner of short sentences

paired with logical forms, since complexity is determined by a cross-product

of powersets both of which are exponential in sentence length.

• A number of techniques are available to make search efficientincludinguse of

a head-dependency parsing model.
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The Generative Model

• We will assume thatP(D, I ,S) is a generative model for an (exhaustive)

parser, rather than the discriminative model of Zettlemoyer et al..

• One advantage of generative models besides their closenessto competence

grammar is that we can invert the parsing model to define the probability of an

utterance given a meaning.

Z However, another difference between the child and standardtreebank

grammar-induction programs is that the child learns grammar incrementally,

utterance-by-utterance.

Z Recomputing the model over the entire corpus so far, as each new sentence is

encountered, is not only psychologically absurd, but computationally

exponential.
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Example

• The child thinks:more′dog′

• The Adult says: “More doggies!”

• Given the string “more dogs” paired with the logical formmore′dogs′, and a

mapping from semantic types onto syntactic type likeS, NP, S\NPetc., the

child can use the universalBT-based combinatory rules of CCG to generate

– all possible syntactic derivations, pairing

– all possible decompositions of the logical form with

– all possible word candidates

• Learning a language is just learning its lexicon and a parsing model.
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The Derivations

• CCG permits just three derivations for the new utterance “More doggies” , as

follows:

(1) a. MORE DOGGIES !

NP/N : more′((e,t),e) N : dogs′(e,t)
>

NP : more′dogs′e

b. MORE DOGGIES !

N : dogs′(e,t) NP\N : more′((e,t),e)
<

NP : more′dogs′e

c. MORE DOGGIES !

NP : more′dogs′e
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The Child’s First Lexicon

• (2) The child’s lexical candidates:

more:= NP/N : more ′
((e,t),e)

N : dogs′(e,t)

doggies:= NP\N : more′((e,t),e)

N : dogs ′
(e,t)

more doggies:=NP : (more′dogs′)e

• A statistical model for these hypotheses can be learned using an incremental

variant of the semi-supervised inside-outside (EM) algorithm (Pereira and

Schabes 1992; Neal and Hinton 1999). We begin with a simplified model,

representing probabilities as expected frequencies, thendefine the model we

actually use.
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Learning the Model for English

• In order to obtain an incremental algorithm, we represent the model as a
vector of expected frequencies for each productionp, defined as

(3) fexp(p) = ∑s∈S∑i∈I P(i|s)∑d∈D P(d|s, i).count(p,d),

where P(d|s, i) = P(d)
∑d∈D P(d)

Z The primary requirement for such a model is that learned information about

seen events in a derivation should influence the probabilities assigned to
unseen events.

• Thus, if the language only consists of sentences of the form “More X”, and
the hundredth sentence is “More erasers”, where “erasers” is a previously
unseen word, this sentence should not only make the learner alittle more
certain that “more” is a determiner meaningmore′.

• It should also make them pretty sure that “erasers” is a noun,andnota
determiner meaningmore′.
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Two Estimators for Expected Frequency

• We define two estimators forfexp.

• FexpE is the expected frequency based on the present sentence and the

possibilities of universal grammar alone. For simplicity we will assume the

latter to be uniformly distributed, so that (3) reduces to the following, where

|D| is the number of derivations:

(4) fexpE(p) = ∑d∈D count(p,d)
|D|

• FexpM for a given interpretation i for sentences is defined as follows, whereP

is the model estimated so far.

(5) fexpM(p) = ∑i∈I P(i|s)∑d∈D P(d|s, i).count(p,d)
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The Algorithm

• The model can be learned using the following incremental variant of the

semi-supervised inside-outside (EM) algorithm (Pereira and Schabes 1992;

Neal and Hinton 1999).

• Every new sentencesn provides a setDn of derivations parallel to (1), which

defines the following:

a. A (possibly empty) set of previously unseen productions involved in some

derivation inDi , including those involving novel lexical entries, that must

be added to the model with cumulativefexptemporarily initialized to zero.

b. (E-step): The set of all productions including those in a,whose cumulative

fexpmust be multiplied byn−1, incremented byfexpE, and divided byn.

c. (M-step):A further increment offexpM−fexpE
n (which may be negative) to the

cumulativefexpfor all productions involved in some derivation inDi . I.e.,

replace the earlier estimate based onf expE.
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The Algorithm

• Step b defines new values for the conditional probabilities for the rules in

question, defining an intermediate model for calculating the a posteriori

probabilities in step c.

• The further update c to the model defines the expected frequencies for the next

cycle. The lexical probabilities for the relevant words in the lexicon given the

new sentence can then be calculated using the model and definition (3), where

P(d|I ,S) is the product of the probabilities of the productions it involves.

• (6) P(d|I ,S) = ∏p∈d P(p|parent)∏LEX(p)∈d P(φ,σ|µ)

Z This is just a probabilistic context-free grammar parser (PCFG). We actually

use a head-dependency model (Collins 2003)
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Normalizing Probabilities of Derivations

• The possibility of lexicalizing more than one element of thelogical form in a
single word means that the alternative derivations for a single logical form
such as those in (1) for our running example and the first sentence “More
doggies” may be of different lengths.

• Since generative models of the kind outlined above, based onthe products of
probabilities of rules, assign undue weight to short derivations, we must
normalize the probabilities of lexical productions over the complexity of their
logical forms.

Z Thus, the probabilityP(φ.σ|µ) of the lexical productions in (6) is

(7) P(φ.σ|µ) = ∏m⊂µP(φ,σ|m)

• For example, the probability of derivation (1c) is not a third, but is the
conditional probability of “more dogs” givenmore′dogs′ times that of “more
dogs” givenmore′, times that of “more dogs” givendogs′—that is,1

3 ×
1
3 ×

1
3.
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Probabilities of the Derivations

• Thus on the basis of the intermediate value(0)fexp(0)+fexpE
1 , the relative

conditional probabilitiesP(D|I ,S) of the three derivations (1) are as follows:

(8) a P(A|I ,S) = P(r0|START) × P(r1|NP : fa)) ×

Plex(more,NP/N|more′)×Plex(doggies,N|dogs′) = 1×0.3̇×0.3̇×0.3̇
∑d P(d|I ,S)

b P(B|I ,S) = P(r0|START) × P(r2|NP : fa)) ×

Plex(doggies,NP\N|more′)×Plex(more,N|dogs′) = 1×0.3̇×0.3̇×0.3̇
∑d P(d|I ,S)

c P(C|I ,S) = P(r0|START) × Plex(more doggies,NP|more′) ×

Plex(more doggies,NP|dogs′) = 1×0.3̇×0. ˙3×0.3̇
∑d P(d|I ,S)

Z P(A|I ,S) = P(B|I ,S) = P(C|I ,S) = 0.3̇
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Child’s First Parsing Model (Simplified)

• This means that the initial model can be calculated as follows:

(9) Rule fexp(n−1) (n−1)fexp(n−1)+fexpE
n fexp(n)

r0. START→ NP : fa 0 1.0 1.0

r1. NP : fa→ NP/N : f N : a 0 0.3̇ 0.3̇

r2. NP : fa→ N : a NP\N : f 0 0.3̇ 0.3̇

l1. NP/N : more′ → more 0 0.3̇ 0.3̇

l2. NP\N : more′ → doggies 0 0.3̇ 0.3̇

l3. N : dogs′ → doggies 0 0.3̇ 0.3̇

l4. N : dogs′ → more 0 0.3̇ 0.3̇

l5. NP : more′dogs′ → more doggies 0 0.3̇ 0.3̇
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The Child’s First Lexicon

• Thus, we have the following updated probabilistic lexicon:

(10) φ σ,µ fexpPlex(σ,µ|φ) Plex(φ|µ)

more:= NP/N : more ′
((e,t),e) 0.3̇ 0.3̇ 0.3̇

N : dogs′(e,t) 0.3̇ 0.3̇ 0.3̇

doggies:= NP\N : more′((e,t),e) 0.3̇ 0.3̇ 0.3̇

N : dogs ′
(e,t) 0.3̇ 0.3̇ 0.3̇

more doggies:=NP : (more′dogs′)e 0.3̇ 0.3̇ 0.3̇
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Early Overgeneration

• Since the word counts and conditional probabilities for “more” and “doggies”

with them meaningmore′((e,t),e) are all equal at this stage, the child may well

make errors of overgeneration, using some approximation to“doggies” to

mean “more”.

• However, even on the basis of this very underspecified lexicon, the child will

not overgenerate “*doggies more”.

• Moreover, further observations, with further updates to frequency counts, will

rapidly lower the estimated conditional probability of thespurious hypotheses

concerning categories and substrings in comparison to the correct ones,

indicated in bold type, as follows:
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The Child’s Second Sentence

• Let us suppose that the second utterance the child hears is “More cookies”.

There are again three derivations parallel to (1). The childcan derive a new

parsing model by adding new rules, updating expected frequencies for all

rules in the new set of derivations, and recalculating a posteriori expected

frequencies as described:
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Prior Probabilities for the Three Possible Derivations

• On the basis of the intermediate value(1)fexp(1)+fexpE
2 ,the length-weighted

relative conditional probabilitiesP(d|I ,S) of the three derivations for “More

cookies” parallel to (1) are as follows:

(11) a P(A|I ,S) = P(r0|START) × P(r1|NP : fa)) × Plex(more,NP/N|more′) ×

Plex(cookies,N|cookies′) = 1.0×0.3̇×0.3̇×0.16̇
∑d P(d|I ,S)

= 0.42

b P(B|I ,S) = P(r0|START)× P(r2|NP : fa))× Plex(cookies,NP\N|more′)×

Plex(more,N|cookies′) = 1×0.3̇×0.1̇6×0.16̇
∑d P(d|I ,S)

= 0.23

c P(C|I ,S) = P(r0|START) × Plex(more cookies,NP|more′) ×

Plex(more cookies,NP|cookies′) = 1×0.3̇×0.016̇×0.25
∑d P(d|I ,S)

= .35

Z P(A|I ,S) 6= P(B|I ,S) 6= P(C|I ,S) 6= 0.3̇
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The Child’s 2nd Parsing Model (Simplified)

• (12) Rule fexp(n−1) (n−1)fexp(n−1)+fexpE
n fexp(n)

r0. START→ NP : fa 1.0 1.0 1.0

r1. NP : fa→ NP/N : f N : a 0.3̇ 0.3̇ 0.34

r2. NP : fa→ N : a NP\N : f 0.3̇ 0.3̇ 0.25

l1. NP/N : more′ → more 0.3̇ 0.3̇ 0.34

l2. NP\N : more′ → doggies 0.3̇ 0.16̇ 0.16̇

l3. N : dogs′ → doggies 0.3̇ 0.1̇6 0.16̇

l4. N : dogs′ → more 0.3̇ 0.16̇ 0.16̇

l5. NP : more′dogs′) → more doggies 0.1̇ 0.16̇ 0.16̇

l6. NP : more′cookies′ → more cookies 0 0.16̇ 0.17

l7. NP\N : more′ → cookies 0 0.16̇ 0.11

r8. N(cookies) : cookies′ → cookies 0 0.16̇ 0.24

l9. N(more) : cookies′ → more 0 0.16̇ 0.11
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The Child’s Second Lexicon

• Thus, we have the following updated probabilistic lexicon:

(13) φ σ,µ fexplex(n) P(σ,µ|φ) P(φ|σ,µ)

more:= NP/N : more ′
((e,t),e) 0.34 0.57895 0.57895

N : dogs′(e,t) 0.16̇ 0.26318 0.5

N : cookies′(e,t) 0.11 0.15789 0.3̇

doggies:= NP\N : more′((e,t),e) 0.16̇ 0.5 0.385

N : dogs ′
(e,t) 0.16̇ 0.5 0.50

cookies:= NP\N : more′((e,t),e) 0.11 0.3̇ 0.15789

N : cookies ′
(e,t) 0.24 0.6̇ 0.6̇

more doggies:=NP : (more′dogs′)e 0.16̇ 0.3̇ 0.3̇

more cookies:=NP : (more′cookies′)e 0.17 0.3̇ 0.3̇
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The Child’s Second Lexicon

Z Notice that the expected frequencies in this table are not quite the same as

those that would be obtained by recomputingfexp over the entire corpus, as in

standard batch EM.

• Nevertheless, at this point, the child is exponentially less likely to generate

“doggie” when she means “more”.

• Experimental sampling by elicitation of child utterances during such

exponential extinction may well give the appearance of all-or-none setting of

parameters like NEG-placement andpro-drop claimed by Thornton and Tesan

(2006).

• This effect is related to the “winner-take-all” effect observed in Steels’ 2004

game-based account of the very similar process of establishing a shared

vocabulary among agents who have no preexisting language.
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An Aside: A Statistically Sound Model

• We actually need a generative model that explicitly states the probabilities of

the productions that are used in producing〈S, I ,D〉.

– We model the probability of the syntactic derivationP(D|START) using

the PCFG type productions described before.

– Each derivation gives a set of syntactic componentsσ
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An Aside: A Statistically Sound Model

• We can now approximate the conditional probability of the associated

semantics as:

– P(λlex|σi ,Λ) ≈ 1
ZP(λlex|Λ)∗ t(τσ,τλ)

– t is a binary function that checks that the types of the syntax and semantics

are compatible.

– Λ is a model of the semantics available to the system. We break the lexical

probability up as follows:

– P(λlex|Λ) = ∏λc∈λlex
P(λlex|λc)×P(λc|Λ)

– TheP(λlex|λc) terms allows us to penalise complex semantics that appear

in the lexicon.

– TheP(λc|Λ) terms allow us to penalise rare semantics.
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An Aside: A Statistically Sound Model

• The probability of〈S, I ,D〉 is calculated as:

P(〈S, I ,D〉|START,Λ) = P(D|START)×∏
i

P(φi |σi ,λi)P(λi |σi ,Λ)

• The grammar must model the production probabilitiesP(p|parent)

• The lexicon must modelP(λlex|λc), P(λc|Λ), P(φ|σ,λ)

• Incremental updates are made to these probability distributions by calculating

likelihoods given each new sentence (as before) and using Bayes’s rule to

update the posterior belief, which is then stored.

• In order to make this simple, the grammar rules are modelled using a Dirichlet

prior and the lexical probabilities are modelled using Dirichlet Processes.

– In both cases the likelihood is conjugate to the prior, so theupdates are

easy to perform
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Later Development

• This effect is also all that is needed to explain the phenomenon of “syntactic

bootstrapping” (Gleitman (1990)), where at a later stage ofdevelopment, the

child can learn lexical entries for words for which the corresponding concept

is not salient, or is even entirely lacking to the child.

• In this connection it is important that the expected frequency of the

non-English rule r2 is already dropping in comparison to r1.
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The Real Point of Using CCG to Model Acquisition

• If children’s exposure to language were merely confined to recitations of

propositions they already had in mind, it would be a dull affair.

• It is not even clear why they would bother to learn language atall, as Clark

(2004) points out in defence of a PAC learning model.

• We know from Fernaldet al. (1989) and Fernald (1993) that infants are

sensitive to interpersonal meanings of intonation from a very early age.

• In English, intonation contour is used to convey a complex system of

information-structural elements, including topic/comment markers and

given/newness markers (Bolinger 1965; Halliday 1967; Ladd1996), and is

exuberantly used in speech by and to infants.

Z For the child, it is this part of the meaning that is the whole point of the

exercise.
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Towards a More Realistic Syntax and Semantics

• For example, it is likely that the child’s representation ofthe utterance

“M ORE DOGGIES! is more like (14), in which [S] represents speaker

syupposition (contributed by the LL% boundary tone),ρ indicates a rheme or

comment (contributed by the H* pitch-accents), * marks emphasis or kontrast

(also contributed by the pitch-accents), and the category NP is “type-raised”,

indicated by the annotationNP↑:

(14) MORE DOGGIES !
H∗ H∗ LL%

NP↑+,ρ Xφ\⋆Xπ,η
: λp.p(*more′*dogs′) : λg.π[S]η g

<

NP↑φ : [S]ρλp.p(*more′*dogs′)
“Mummy makes the property afforded by more dogs common ground.”
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• Consider the child in a similar situation faced with the following utterance,

from Fisher and Tokura (1996) as discussed in Steedman 1996:

(15) You LIKE the doggies!
H∗ L LL%

S/(S\NP) (S\NP)/NP Xφ\⋆Xπ,η Sφ\(Sφ/NPφ)
: λp.p you′ * like′ : λg.π[S]η g : [S]ηλq.q dogs′

>B
S/NP : λx.* like x you′

<
Sφ/NPφ : [S]ρλx.* like′x you′

<
Sφ : ([S]θλp.p dogs′)([S]ρλx.* like′x you′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S: like′dogs′you′

“Mummy supposes what property the dogs afford to be common ground,

Mummy makes it common ground it’s me liking them.”

• Fisher points out that the L boundary after the verb makes theintonation

structure inconsistent with standard assumptions about surface constituency.
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What CCG is Good For

• However, this intonation structure is isomorphic to the CCGderivation above,

which delivers the corresponding theme/rheme informationpartition directly.

• Thus, here too, the availability of the full semantic interpretation, including

information-structural information, directly reveals the target grammar.

• In this case, since the derivation requires the use of the forward composition

rule, indexed>B, the child gets information not only about the probability of

the verb, the nominative, and the accusative categories of English, but also

about the probability of applying the composition rule to the first two

categories, the probability that the subject of “like” willbe headed by “you”,

and its object be headed by “doggies”.

• Thus, the child can build the entire parsing model in parallel with learning the

grammar, including the long range dependencies.
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Discussion

• Syntax is learned on the basis of preexisting semantic interpretations afforded

by the situation of adult utterance, using a statistical model over a universal

set of grammatical possibilities.

• The existence of the model itself helps the child to rapidly acquire a correct

grammar even in the face of competing ambiguous semantics and error,

without requiring the (empirically questionable) subset principle.

• The fact that the onset of syntactically productive language at the end of the

Piagetian sensory-motor develomental phase is accompanied by an explosion

of advances in qualitatively different “operational” cognitive abilities suggests

that the availability of the statistical model has a feedback effect, allowing

“Syntactic bootstrapping” of concepts to which the child would not otherwise

gain access.
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Parameters and Triggers Unnecessary

• The theory presented here somewhat resembles the proposal of Fodor 1998 as

developed in Sakas and Fodor (2001) and Niyogi (2006) in treating the

acquisition of grammar as in some sense parsing with a universal

“supergrammar”. As in that proposal, both parameters and triggers are simply

properties of the language-specific grammar itself—in their case, rules over

independently learned parts of speech, in present terms, lexical categories.

• Rather than learning rules in an all or none fashion on the basis of

unambiguous sentences that admit of only one analysis, the present theory

adjusts probabilities in a model of all elements of the grammar for which

there is positive evidence forall processable utterances.
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Against “Parameter Setting”

• In this respect, it resembles the proposal of Yang (2002). However it differs in
eliminating explicit parameters.

• If the parameters are implicit in the rules or categories themselves, and you
can learn the rules or categories directly, why should the child (or a truly
Minimal theory) bother with parameters at all?

• For the child, all-or-none parameter-setting is counterproductive, as it will
make it hard to learn the many languages which have inconsistent settings of
parameters across lexical types and exceptional lexical items, as in German
and Dutch head finality.

• Or consider English expressions like the following:

(16) Doggies galore!

Z “Galore” is the only phrase-final determiner in E. (stolen from Irish).
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Conclusion

• Everything that we think of as cognitive, or having the property of

intentionality, from stereo vision to semantics of discourse, is shaped by the

primordial need to act in the world.

• The operations of compositionB and type-raisingT that form the basic of

affordance and seriation in planning provide the basis for universal grammar

beyond the lexicon.

• Thinking, Semantic Interpretation,and Understanding alltake place in a

dynamic context of goals and plans that is essentially pre-linguistic.
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So Why Don’t Apes have Productive Syntax?

• If composition and type raising are prelinguistic planningprimitives that we
share with other animals, what more is needed to support the language
faculty?

• One candidate is modal and propositional attitude concepts—that is, functions
over propositional entities. (We have so far glossed over the important fact
that plans compose actions of typestate→ state, whereas syntax composes
functions of typeproposition→ proposition.) These induce truerecursionin
conceptual structures and grammar via the grounded lexicon.

• There is no evidence that apes can attain the kind of theory ofother minds that
is required to support such concepts. Perhaps this isall they lack (Premack
and Premack 1983;Tomasello 1999; Steedman 2002a,b; Hauseret al.2002).

• If so, we need to know much more about the development of propositional
attitude concepts, and their relation to planning and tool use around Piagetian
sensory-motor developmental stage 6.
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