Introduction to Cognitive Science: Notes

X: Child and Computer Language Development

e Readings for this sectioriGopnik and Schulz 2004, *Zettlemoyer and
Collins 2005.



Child and Computer Language Development

e The child’s problem is similar to the problem of inducing adbank grammatr,
but a little harder.

— They haveunordered logical formaot language-specific ordered
derivation trees.

— So they have to work owrhich word(s) go with which element(s) of
logical form, as well as the directionality of the syntactic categonesich
are otherwise universally determined by the semantic tpbdse latter).



Child and Computer Language Development

e Children do not seem to have to deal with a greater amountof g#ran the
Penn WSJ treebank has (McWhinnie 2005).

— But they may need to deal withtuations which support a number of
logical forms

— And they need to be able to recover from temporargng lexical
assignments

— And they need to be able to handiéical ambiguity



Computational Accounts

e Siskind (1995, 1996), Villavicencio (2002), and Zettlerabgnd Collins
(2005) offer computational models of this process.

e Both theories make strong assumptions about the assacatiwords with
elements of logical form.

e Both make strong assumptions about universally availagtametrically
specified rule- or category- types, the latter in the form tff@e hierarchy

e Both deal with noise and homonymy probabilistically.



Computational Accounts: Zettlemoyer and Collins

e Zettlemoyer and Collins’ algorithm (UAI 2005) allovesy contiguous
substringof the sentence to be a lexical item. For a given logical fdhma,
learner has to search the cross-product of the substringsetof the string
with the set of pairs of legal categories with elements ofsiestructure
powerset of the logical form for categories that yield conabory derivations
that yield the correct logical form.

e Learning is via a log-linear model using lexical entriesl{pms features and
gradient descent on their weights, iterating over sucees®ntences of a
corpus of sentence-logical form pairs.

e \We can improve on this by

— Directly generating the parses that UG supports for theesmat-meaning
pair.

— Building a full parsing model (necessary if we are to scale).



Zettlemoyer and Collins (Contd.)

e The algorithm as presented in 2005 learns only a very snihlkéra
unambiguous fragment of English, hand-labeled with unguentified
database queries as logical forms, and an English specréatory of
possible syntactic category types in lieu of Universal Graan

e However, Siskind’s and Villavicencio’s results already ts that the
algorithm should work with multiple candidate logical fosm

e Similarly, their results show that a universal set of catgdgpes can be used
without overwhelming the learner.



Zettlemoyer and Collins (Contd.)

e All of these models depend on availability to the learnertadrs sentences
paired with logical forms, since complexity is determingdaocross-product
of powersets both of which are exponential in sentence engt

e A number of techniques are available to make search effimehtdinguse of
a head-dependency parsing model



The Generative Model

e We will assume thaP(D,1,S) is a generative model for an (exhaustive)
parser, rather than the discriminative model of Zettlemn@teal.

e One advantage of generative models besides their closenesspetence

grammar is that we can invert the parsing model to define thlkeagimlity of an
utterance given a meaning.

However, another difference between the child and stanweethank

grammar-induction programs is that the child learns gramnm@aementally
utterance-by-utterance.

Recomputing the model over the entire corpus so far, as eaglsantence is

encountered, is not only psychologically absurd, but caiapanally
exponential.



Example

The child thinks:morédod
The Adult says: “More doggies!”

Given the string “more dogs” paired with the logical fomorédogs, and a
mapping from semantic types onto syntactic type &P, S\NP etc., the
child can use the universBIT -based combinatory rules of CCG to generate

— all possible syntactic derivations, pairing
— all possible decompositions of the logical form with

— all possible word candidates

Learning a language is just learning its lexicon and a pgrmsiodel.



The Derivations

e CCG permits just three derivations for the new utteranceré/ipggies” , as
follows:

(1) a. MORE DOGGIES !
NP/N : more%(e,t)je) N : dog%e,t)
NP: morédogs

b. MORE DOGGIES !
N : dogsiejt) NP\N : more‘((e’o’e)
NP: morédogs

c. MORE DOGGIES'!
NP: morédogs
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The Child’s First Lexicon

e (2) The child’s lexical candidates:
more:= NP /N : more’

((e)t).e)
N : dog%ejt)
doggies:= NP\N : moré((et) o
N : dogs /(e,t)

more doggies:NP: (moredogs)e

e A statistical model for these hypotheses can be learned) @asinncremental
variant of the semi-supervised inside-outside (EM) alponi (Pereira and
Schabes 1992; Neal and Hinton 1999). We begin with a simglrfiedel,

representing probabilities as expected frequencies,dbéne the model we
actually use.
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Learning the Model for English

e |n order to obtain an incremental algorithm, we represeattindel as a
vector of expected frequencies for each producppdefined as

(3) fexp(p) — ZSESZiel P(”S) ZdeD P(d\S,i)-COUm(IO, d)’

where P(d|s,i) = zdsédP)(d)

The primary requirement for such a model is that learnedrmédion about

seen events in a derivation should influence the probagsldssigned to
unseen events.

e Thus, if the language only consists of sentences of the févioré X”, and
the hundredth sentence is “More erasers”, where “erasgia’previously
unseen word, this sentence should not only make the leaiiide anore
certain that “more” is a determiner meaninmpre.

¢ |t should also make them pretty sure that “erasers” is a nandnota
determiner meaningiore.
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Two Estimators for Expected Frequency

e \We define two estimators fdexp

o Fex[x is the expected frequency based on the present sentendeeand t
possibilities of universal grammar alone. For simplicitg will assume the
latter to be uniformly distributed, so that (3) reduces t®fibllowing, where
ID| is the number of derivations:

_ ZdE Coun(pad)
(4) fexpe(p) = <4< D]

e Fexpy for a given interpretation i for sentensas defined as follows, where
IS the model estimated so far.

(5) feXIZM (p) — Ziel P(I ‘S) ZdED P(d‘S, i).counl(p, d)
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The Algorithm

e The model can be learned using the following incrementadwaof the

semi-supervised inside-outside (EM) algorithm (Perema Schabes 1992,
Neal and Hinton 1999).

e Every new sentencg, provides a seb, of derivations parallel to (1), which
defines the following:

a. A (possibly empty) set of previously unseen productionslved in some
derivation inD;j, including those involving novel lexical entries, that mus
be added to the model with cumulatifexptemporarily initialized to zero.

b. (E-step): The set of all productions including those iwlpse cumulative
fexpmust be multiplied byn— 1, incremented b¥exp:, and divided byn.

- : fexpy —fexpe - :
c. (M-step):A further increment of - (which may be negative) to the

cumulativefexpfor all productions involved in some derivationi. |.e.,
replace the earlier estimate basedfexx.
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The Algorithm

e Step b defines new values for the conditional probabilitoegte rules in
guestion, defining an intermediate model for calculatirgdlposteriori
probabillities in step c.

e The further update c to the model defines the expected frempefor the next
cycle. The lexical probabilities for the relevant words lne iexicon given the
new sentence can then be calculated using the model andidefi(d), where
P(d|l,S) is the product of the probabilities of the productions itdwes.

e (6) P(d[l,S) = [Nped P(p|parent [ ex(p)ed P(® O[W)

This IS Just a probabilistic context-free grammar pars€2KiB). We actually
use a head-dependency model (Collins 2003)

15



Normalizing Probabilities of Derivations

e The possibility of lexicalizing more than one element of kbgical form in a
single word means that the alternative derivations for glsifogical form
such as those in (1) for our running example and the first seatédVore
doggies” may be of different lengths.

e Since generative models of the kind outlined above, basd¢deoproducts of
probabilities of rules, assign undue weight to short déioves, we must

normalize the probabilities of Iexical productions oves tomplexity of their
logical forms.

Thus, the probability?(@.o|p) of the lexical productions in (6) is

(7) P(9.0|l) = [NmcuP(®,0m)

e For example, the probability of derivation (1c) is not adhibut is the
conditional probability of “more dogs” givemorédogs times that of “more

dogs” givenmoré, times that of “more dogs” givedogs—that is,  x 3 x 3.
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Probabilities of the Derivations

e Thus on the basis of the intermediate valXPUHE the relative
conditional probabilitie$(D|l,S) of the three derivations (1) are as follows:

8) aP(AIlLS = P(O|[START x P(1NP : fa) x
Piex(more NP/N|mOre) x Piex(doggiesN|dogs) = 2x03x0.3-03

b P(BI,S) = P(O|START x P@2INP : fa)) x
Plex(d0ggiesNP\N|more) x Piex(more N|dogg) = 128823

¢ P(C[I,S) = P(rO|START x Piex(more doggiesNP/more) x

1x0.3x0.3x0.3
>4 P(d[l,S

Piex(more doggiedNP|dogs) =
2 P(AllL,S) =P(B|I,S) = P(C|I,S) = 0.3
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Child’s First Parsing Model (Simplified)

e This means that the initial model can be calculated as faiow

(9) Rule fexp(n— 1) {D-eXINLHEXE oy (n)
r0. START— NP: fa 0 1.0 1.0
rl1.NP:fa— NP/N:f N:a 0 0.3 0.3
r2.NP:fa—N:a NP\N:f 0 0.3 0.3
I1. NP/N : moré — more 0 03 0.3
12. NP\N : moré — doggies 0 (B 0.3
13. N : dogs — doggies 0 (B 0.3
14. N : dog¢ — more 0 03 0.3
5. NP: morédog¢ — more doggies 0 a 0.3
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The Child’s First Lexicon

e Thus, we have the following updated probabilistic lexicon:

(10) @ o, fexp Piex(0, M|®) Pex(@[L)
more:= NP/N : more’((e,t),e) 0.3 0.3 0.3
N : dogs, 03 03 0.3
doggies:= NP\N : morQ(e,t)je) 0.3 0.3 0.3
N : dogs ’(e,t) 0.3 0.3 0.3

more doggies:™P: (morédogd)e 0.3 0.3 0.3
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Early Overgeneration

e Since the word counts and conditional probabilities for feicand “doggies”
with them meaningnore‘((e’t%e) are all equal at this stage, the child may well
make errors of overgeneration, using some approximatidddggies” to
mean “more”.

e However, even on the basis of this very underspecified lexittee child will
not overgenerate “*doggies more”.

e Moreover, further observations, with further updates &mftrency counts, will
rapidly lower the estimated conditional probability of theurious hypotheses
concerning categories and substrings in comparison todiveat ones,
Indicated in bold type, as follows:
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The Child’'s Second Sentence

e Let us suppose that the second utterance the child hearsoe“tbokies”.
There are again three derivations parallel to (1). The atald derive a new
parsing model by adding new rules, updating expected frezjas for all
rules in the new set of derivations, and recalculating agyast expected
frequencies as described:
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Prior Probabilities for the Three Possible Derivations

e On the basis of the intermediate valdd&EIXE the |ength-weighted
relative conditional probabilitieB(d|l,S) of the three derivations for “More
cookies” parallel to (1) are as follows:

(11) a P(AJl,S) = P(rO|START x P(r1|NP : fa)) x Pjex(more NP/N|more) x

Piex(cookiesN|cookie$) = 1:0x0- 3?5" |3§)0 16 _ .42

b P(BJI,S) = P(rO|START x P(r2|NP: fa)) x Pjex(cookiesNP\N|moré) x
Plex(More N|cookie) = 1x0:3x0.16x0.16 _ (j 3

>4 P[5
c P(C[I,S) = P(rO[START X Pjex(more cookiedNP|moré) x
Piex(more cookiedNP|cookie$) = 12 3X0<g‘}68>30 29 — 35

@ P(Al,S) # P(BI,S) # P(C|I,S) # 0.3
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The Child’s 2nd Parsing Model (Simplified)

e (12) Rule fexp(n—1) (”_1)feXp(2_1)+feXFE fexp(n)
r0. START— NP: fa 1.0 1.0 1.0
rl.NP:fa— NP/N:f N:a 0.3 0.3 0.34
r2.NP:fa—N:a NP\N:f 0.3 0.3 0.25
I1. NP/N : moré — more 03 0.3 0.34
12. NP\N : moré — doggies 08! 0.16 0.16
3. N : dog¢ — doggies B 0.16 016
14. N : dogé — more 03 0.16 0.16
5. NP: morédogd) — more doggies a 0.16 0.16
16. NP : morécookie$ — more cookies 0 a6 0.17
17. NP\N : moré€ — cookies 0 016 011
r8. N(cookieg : cookies — cookies 0 016 0.24
19. N(more) : cookie$ — more 0 016 0.11
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The Child’'s Second Lexicon

e Thus, we have the following updated probabilistic lexicon:

(13) ¢ o,u fexex(n) P(0, 1 @) P(glo, )
more;:= NP /N : more’(<e e 0-34 0.57895 0.57895
N : dogd,, 016 026318 0.5
N : cookies, 011  0.15789 (B
doggies:=  NP\N:more . 0.16 0.5  0.385
N dogs (g 0.16 0.5  0.50
cookies:=  NP\N:moré,, o, 0.11 03 015789
N : cookies {, 0.24 0.6 0.6
more doggies:NP: (morddogd)e  0.16 0.3 0.3
more cookies: NP : (morécookie$)e 0.17 03 0.3
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The Child’'s Second Lexicon

Notice that the expected frequencies in this table are nt¢ tfue same as

those that would be obtained by recomputigg over the entire corpus, as in
standard batch EM.

e Nevertheless, at this point, the child is exponentiallg ldeely to generate
“doggie” when she means “more”.

e Experimental sampling by elicitation of child utterancesidg such
exponential extinction may well give the appearance obalhone setting of
parameters like NEG-placement goia-drop claimed by Thornton and Tesan
(2006).

e This effect is related to the “winner-take-all” effect obged in Steels’ 2004
game-based account of the very similar process of estaidishshared
vocabulary among agents who have no preexisting language.
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An Aside: A Statistically Sound Model

e We actually need a generative model that explicitly stdtegorobabilities of
the productions that are used in producii$l, D).

— We model the probability of the syntactic derivatiB(D|ST ART) using
the PCFG type productions described before.

— Each derivation gives a set of syntactic components

26



An Aside: A Statistically Sound Model

e \We can now approximate the conditional probability of thecasated
semantics as:

_ P()\|6X‘O-i7/\> ~ %P()\Iex‘/\) *t(TO'a-[)\>
— tIs a binary function that checks that the types of the syntaksemantics
are compatible.

— A 'Iis a model of the semantics available to the system. We bhealexical
probability up as follows:

— P(AiexIN) = Macere, PAiex|Ac) X P(Ac|A)
— TheP(Ajex|Ac) terms allows us to penalise complex semantics that appear
In the lexicon.

— TheP(A¢|A\) terms allow us to penalise rare semantics.
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An Aside: A Statistically Sound Model

The probability of(S1,D) is calculated as:

P((S1,D)|STARTA) = P(D|START) x I_l P(@|oi,Ai)P(Ai|oj, \)

The grammar must model the production probabilii¢p| parent)
The lexicon must modd?(Ajex|Ac), P(Ac|AN), P(@|o,A)

Incremental updates are made to these probability distoibs by calculating
likelihoods given each new sentence (as before) and usigg<®=arule to
update the posterior belief, which is then stored.

In order to make this simple, the grammar rules are modekaagua Dirichlet
prior and the lexical probabilities are modelled using Enhiet Processes.

— In both cases the likelihood is conjugate to the prior, sauth@ates are
easy to perform
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Later Development

e This effect is also all that is needed to explain the phename “syntactic

bootstrapping” (Gleitman (1990)), where at a later stagaevkelopment, the
child can learn lexical entries for words for which the cepending concept
IS not salient, or is even entirely lacking to the child.

¢ |n this connection it is important that the expected freaqyeof the
non-English rule r2 is already dropping in comparison to r1l.
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The Real Point of Using CCG to Model Acquisition

e |f children’s exposure to language were merely confined ¢tdaons of
propositions they already had in mind, it would be a dull iaffa

e |tis not even clear why they would bother to learn languagalaas Clark
(2004) points out in defence of a PAC learning model.

e We know from Fernalekt al. (1989) and Fernald (1993) that infants are
sensitive to interpersonal meanings of intonation fromy early age.

e In English, intonation contour is used to convey a complesteay of
Information-structural elements, including topic/commhmarkers and
given/newness markers (Bolinger 1965; Halliday 1967; LA6€6), and is
exuberantly used in speech by and to infants.

For the child, it is this part of the meaning that is the whadenp of the
exercise.
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Towards a More Realistic Syntax and Semantics

For example, it is likely that the child’s representatiortlod utterance

“M ORE DOGGIEZ is more like (14), in which [S] represents speaker
syupposition (contributed by the LL% boundary tong)ndicates a rheme or
comment (contributed by the H* pitch-accents), * marks eaghor kontrast
(also contributed by the pitch-accents), and the categ®rysNtype-raised”,
indicated by the annotatiddP!:

(14) MORE DOGGIES !
Hx Hx LL%

NF’Lp X(p\*XT[,r]
. Ap.p(*moré*dog$) : Ag.T{Sn g
<

NP(TP: [SpAp.p(*more*dogs)
“Mummy makes the property afforded by more dogs common gidun

31



e Consider the child in a similar situation faced with the d@ling utterance,
from Fisher and Tokura (1996) as discussed in Steedman 1996:

15 You LIKE the doggies!
( ) Hx L 99 LL%

S/(S\NP) (S\NP)/NP X\ Xrn  Sp\(Sp/NFy)
‘Ap.pyod  *like/ :Ag. TSN g : [SnAg.q dogs
S/NP: Ax.*like x y(>)5’)
Sp/NPy : [SpAx.*like'x you

Sp : ([SOAp.p dogs)([SpAx.*like'x you)

S: like’dogsyou
“Mummy supposes what property the dogs afford to be commaurgt,

Mummy makes it common ground it's me liking them.”

e Fisher points out that the L boundary after the verb makesattiomation
structure inconsistent with standard assumptions abafgiconstituency.
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What CCG is Good For

However, this intonation structure is isomorphic to the Cd¥avation above,
which delivers the corresponding theme/rheme informapiantition directly.

Thus, here too, the availability of the full semantic intetation, including
Information-structural information, directly revealsettarget grammar.

In this case, since the derivation requires the use of theda composition
rule, indexed>B, the child gets information not only about the probability o
the verb, the nominative, and the accusative categoriesgiidh, but also
about the probability of applying the composition rule te first two
categories, the probability that the subject of “like” bk headed by “you”,
and its object be headed by “doggies”.

Thus, the child can build the entire parsing model in pakatléh learning the
grammar, including the long range dependencies.
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Discussion

e Syntax is learned on the basis of preexisting semanticgre&ations afforded
by the situation of adult utterance, using a statistical ehogter a universal
set of grammatical possibilities.

e The existence of the model itself helps the child to rapidiglare a correct
grammar even in the face of competing ambiguous semantecsraao,
without requiring the (empirically questionable) subsetqple.

e The fact that the onset of syntactically productive languagthe end of the
Piagetian sensory-motor develomental phase is acconmgphpian explosion
of advances in qualitatively different “operational” caiiyre abilities suggests
that the availability of the statistical model has a feedtaftect, allowing
“Syntactic bootstrapping” of concepts to which the childubnot otherwise
gain access.
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Parameters and Triggers Unnecessary

e The theory presented here somewhat resembles the progdsadar 1998 as
developed in Sakas and Fodor (2001) and Niyogi (2006) initgahe
acquisition of grammar as in some sense parsing with a wsaver
“supergrammar”. As in that proposal, both parameters agders are simply
properties of the language-specific grammar itself—inrtbase, rules over
iIndependently learned parts of speech, in present terxisaleategories.

e Rather than learning rules in an all or none fashion on theslmds
unambiguous sentences that admit of only one analysis rédsemt theory
adjusts probabilities in a model of all elements of the graanfar which
there is positive evidence fail processable utterances.

35



Against “Parameter Setting”
e In this respect, it resembles the proposal of Yang (2002yvéver it differs in
eliminating explicit parameters.

¢ |f the parameters are implicit in the rules or categoriesrigelves, and you
can learn the rules or categories directly, why should thiel ¢br a truly
Minimal theory) bother with parameters at all?

e For the child, all-or-none parameter-setting is countedpctive, as it will
make it hard to learn the many languages which have incemisettings of
parameters across lexical types and exceptional lexmalst as in German
and Dutch head finality.

e Or consider English expressions like the following:
(16) Doggies galore!
“Galore” IS the only phrase-final determiner in E. (stoleonfrIrish).
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Conclusion

e Everything that we think of as cognitive, or having the pnopef
Intentionality, from stereo vision to semantics of discourse, is shape@dy t
primordial need to act in the world.

e The operations of compositid® and type-raising that form the basic of
affordance and seriation in planning provide the basis foversal grammar
beyond the lexicon.

e Thinking, Semantic Interpretation,and Understandingedié place in a
dynamic context of goals and plans that is essentially ipigilstic.
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So Why Don’t Apes have Productive Syntax?

If composition and type raising are prelinguistic plannprgnitives that we
share with other animals, what more is needed to supporatigubhge
faculty?

One candidate is modal and propositional attitude coneeftat is, functions
over propositional entities. (We have so far glossed oveiriportant fact
that plans compose actions of typiate— state whereas syntax composes
functions of typegiroposition— proposition) These induce truegscursionin
conceptual structures and grammar via the grounded lexicon

There is no evidence that apes can attain the kind of theaothef minds that
IS required to support such concepts. Perhaps tlal they lack (Premack
and Premack 1983;Tomasello 1999; Steedman 2002a,b; HatLeseP002).

If so, we need to know much more about the development of [@opoal
attitude concepts, and their relation to planning and tselaround Piagetian
sensory-motor developmental stage 6.
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