NLTK Tutorial: Tagging
Edward Loper

Table of Contents

B IR 00 0 Yo NV Lol 50 o LU 2
2. Part-of-Speech Tag@ingccocvueerurrierinriirinninsnnisinsiisnnsiissssissssessssssessssssssssssssssssessases 2
3. The nltk.tagger Module.........innrinininrinininriininiisiniicniessssissessessesscns 2
3.1. Tag@edTYPe ...cooveviiiiieicic e 3
3.2. Reading Tagged COrporaccooeuiiiiiuiiiiiiiiiiicccc s 3
3.3. The Taggerl Interface..........cccocoeiuiiiiiiiiiiiiiiiiccces 4
B, TAGGOTS weeeurerreeriirenrissinnisnesnessnessesnessessssssessssssesssessesssessesssessasssessssssessasssessasssessssssesssessessns 4
4.1. A Default TAGEercccoiiviiiiiiiiiiiiiic s 4
4.2. Unigram Tagg@ingccocevveiiiiiiiniiiiicecc e 5
4.3. Nth Order Tagging..........cccoceuruiiiiiiiniiiiiiiiiinc s 5
4.4. Combining TagerS........ccccuvuiuiiiiiiiiiiiiiiicic s 6
5. Tagging: A Closer LOOK.......ciiinninniniiininniinniniinsiniinscissessiessesssessessssssessssesses 7
6. Sequential TAGGETS......ccveevrirerirririnisniinsisiiinsistiississssississssissesssssssesssssssssssssessssesssssans 7
6.1. SequentialTagger.tag NeXtccccoovriiieiiiie e 8
6.2. SequentialTag@er.tag.........ccccovviviiiniiiiiiiiiiicic e 8
6.3. The SequentialTagger Implementation.............cccccveiviiiiniiiniiiiiiincnes 8
.. SUDCLASSES ...ttt ettt e e e e e et e e e e e e s ee s s rteeeessessssaaeeeessasan 9
7. NIN_CD_TAaGGET ...cccueruerrerrerreresiesrestestissessissessessissssssssssssssssssssssssssssssessessessesssssessessessessesses 9
8. UNiGramTagerccccuvuerreinuirenintirinsiniiinsensiissessinssessesssessessssesssssssesssssssessessssesssssssesss 10
8.1. Training the Unigram Taggercccoeeiviiiiiiniiiiiiiiiiiciiccccceeas 10
8.2. Tagging with the Unigram Tagger..........ccococeviviiiiiniiiiiiiinciiciccccecs 10
8.3. Initializing the Unigram Tagger...........cccccvviiiiiiiiniiiiiiiiicicccs 11
8.4. The UnigramTagger Implementationcccccccovviiiiiiiiiiniiiicis 11
9. NthOTAerTaggercovuerviinrerrnenrenninieiiessiissessisnssessesssessessssesssssssesssssssessesssesssssssssss 11
9.1. Initializing the Nth Order Taggerccccccuvuiuiiiniiiiniiiiiiiiiicicccce, 12
9.2. Training the Nth Order Taggercccooiiiiiiiniiiiiiiiiiccc 12
9.3. Tagging with the Nth Order Tagger..........cccccccooviiiniiniiic, 12
9.4. The NthOrderTagger Implementation...........cccocoeueuiiiiiininiiiiiniiicccne, 12
10. BaCKOFETAGGET «..ucuvvereriririiiritiritiinitiisiiissenncsensesinssesssssssssssesssssssssssssssssssassensas 13
10.1. Initializing a Backoff Tagger..........cccccvueuiviiiiiiiiiiniiiiiiiciccce 13
10.2. Tagging with the Backoff Taggercccocoeiviiiiniiiiiiccs 13
10.3. The BackoffTagger Implementationccccccceiiiviiiiiiiiiiniiiicins 14
T L. EX@ICIS@S auueeeerreerrernrerersesssssnnseeressssssssssssesssassssssssnnsanans 14
11.1. Combining Taggers with BackoffTaggerccccccovviiiiiiininiiniiiiics 14
11.2. Tagger COnteXt......ccovvviiiiiiiiiiiiiccc 15
11.3. Reverse Sequential Taggersccooeeiiiiiiiiiiiiiiicccee 15
11.4. Processing Individual Sentences.............cccocoeveiviniiiicccccccccceeee 16
11.5. Alternatives t0 BACKOL ooiioieiiiieeieeeeeeeeeeeee et 16

1. Introduction

When processing a text, it is often useful to associate auxiliary information with each
token. For example, we might want to label each token with its part of speech; or
we might want to disambiguate homonyms by associating them with "word sense"
labels. This kind of auxiliary information is typically used in later stages of text
processing. For example, part of speech labels could be used to derive the internal
structure of a sentence; and "word sense" labels could be used to allow a question-
answering system to distinguish homonyms.

The process of associating labels with each token in a text is called tagging, and the
labels are called tags. The collection of tags used for a particular task is known as a
tag set.

Part-of-speech tagging is the most common example of tagging, and it is the exam-
ple we will examine in this tutorial. But you should keep in mind that most of the
techniques we discuss here can also be applied to many other tagging problems.

2. Part-of-Speech Tagging

Part-of-speech tags divide words into categories, based on how they can be com-
bined to form sentences. For example, articles can combine with nouns, but not
verbs. Part-of-speech tags also give information about the semantic content of a
word. For example, nouns typically express "things," and prepositions express re-
lationships between "things."

Most part-of-speech tag sets make use of the same basic categories, such as "noun,"
"verb," "adjective," and "preposition." However, tag sets differ both in how finely
they divide words into categories; and in how define their categories. For example,
"is" might be tagged as a verb in one tag set; but as a form of "to be" in another tag set.
This variation in tag sets is reasonable, since part-of-speech tags are used in different

ways for different tasks.

In this tutorial, we will use the tag set listed in Table 1. This tag set is a simplification
of the commonly used Brown Corpus tag set. The complete Brown Corpus tag set has
87 basic tags. For more information on tag sets, see Foundations of Statistical Natural
Language Processing (Manning & Schutze), pp. 139-145.

Table 1. Tag Set

AT Article

NN Noun

VB Verb

JJ Adjective

IN Preposition

CD Number

END Sentence-ending punctuation

3. The nltk.tagger Module NLTK Tutorial: Tagging

The nltk.tagger module defines the classes and interfaces used by NLIK to per-
form tagging.

3.1. TaggedType

NLTK defines a simple class, TaggedType , for representing the text type of a tagged
token. A TaggedType consists of a base type and a tag. Typically, the base type and
the tag will both be strings. For example, the tagged type for the noun "dog" would
have the base type 'dog’ and the tag 'NN’ . A tagged type with base type b and tag
t is written b/ t . Tagged types are created with the TaggedType constructor:

>>> ttypel = TaggedType('dog’, 'NN)
'dog’/'NN’
>>> ttype2 = TaggedType(runs’, 'VB’)
runs’/'VB’

A TaggedType ’s base type is accessed via the base member function; and its tag is
accessed via the tag member function:

>>> ttypel.base()
ldog!

>>> ttype2.tag()
VB’

To construct a tagged token, simply use the Token constructor with a TaggedType :

>>> ttype = TaggedType('dog’, 'NN’)
'dog’/’'NN’

>>> ttoken = Token(ttype, Location(5))
'dog’/’'NN’'@I[5]

3.2. Reading Tagged Corpora

Several large corpora (such as the Brown Corpus and portions of the Wall Street
Journal) have been manually tagged with part-of-speech tags. These corpora are pri-
marily useful for testing taggers and for training statistical taggers. However, before
we can use these corpora, we must read them from files and tokenize them.

Tagged texts are usually stored in files as a sequences of whitespace-separated to-
kens, where each token is of the form base/tag . Figure 1 shows an example of
some tagged text, taken from the Brown corpus.

The/at grand/jj jury/nn commented/vbd on/in a/at number/nn of/in
other/ap topics/nns ,/, among/in them/ppo the/at Atlanta/np and/cc
Fulton/np-tl County/nn-tl purchasing/vbg departments/nns which/wdt
it/pps said/vbd “/* are/ber well/gl operated/vbn and/cc follow/vb
generally/rb accepted/vbn practices/nns which/wdt inure/vb to/in
the/at best/jjt interest/nn of/in both/abx governments/nns "/* ./.

Figure 1. An Example of Tagged Text (excerpted from the Brown Corpus)

To tokenize tagged texts of this form, the nltk.tagger = NhbNUletodefinleggthe
TaggedTokenizer class:

>>> tagged_text str = open(’corpus.txt’).read()

'John/NN saw/VB the/AT book/NN on/IN the/AT
table/NN ./END He/NN sighed/VB ./END’

>>> tokens = TaggedTokenizer().tokenize(tagged text_str)
[John’’/NN'@[0w], 'saw’/'VB'@[1w], 'the’/AT @[2w],
'book’/’NN'@[3w], 'on’/IN'@[4w], 'the' AT @[5w],
‘table’’NN'@[6w], "/END'@[7w], 'He'’'NN'@[8w],
'sighed’/'VB'@[9w], '""END'@[10w]]

If TaggedTokenizer ~ encounters a word without a tag, it will assign it the default tag
None.

3.3. The Taggerl Interface

The nitk.tagger =~ module defines Taggerl , a general interface for tagging texts. This
interface is used by all taggers. It defines a single method, tag , which assigns a tag
to each token in a list, and returns the resulting list of tagged tokens.

>>> tokens = WSTokenizer().tokenize(text_str)
[John'@[0w], 'saw'@[1w], 'the’@[2w], 'book’ @[3w],
‘'on’'@[4w], 'the’@[5w], 'table’@[6w], ''@[7w],
'He'@[8w], 'sighed’@[9w], '.’@[10w]]

>>> my_tagger.tag(tokens)

[John’’NN'@[0w], 'saw’/'VB'@[1w], 'the’/'AT' @[2w],
'book’’'NN'@[3w], 'on’/IN'@[4w], 'the''AT'@[5w],
‘table’/’NN'@[6w], 'TEND'@[7w], 'He''NN'@[8w],
'sighed’/’VB'@[9w], '/END'@[10w]]

4. Taggers

The nltk.tagger module currently defines four taggers; this list will likely
grow in the future. This section describes the taggers currently implemented by
nltk.tagger , and how they are used.

4.1. A Default Tagger

The simplest tagger defined by nltk.tagger ~ is NN_CD_Tagger. This tagger assigns a
tag to each token on the basis of its type. If its type appears to be a number, it assigns
the type "CD." Otherwise, it assigns the type "NN."

>>> tokens = WSTokenizer().tokenize(text_str)
[John'@[0w], 'saw'@[1w], '3'@[2w],

'polar @[3w], 'bears’'@[4w], '.'@[5wW]]

>>> my_tagger.tag(tokens)

[John'//NN'@[0w], 'saw/NN'@[1w], '3'/CD'@[2w],
'polar//NN’@[3w], 'bears’/'NN'@[4w], "I'NN'@[5wW]]

This is a simple algorithm, but it yields quite poor performand¥i¥kefinissd/binggeoif
On a typical corpus, it will tag only 20%-30% of the tokens correctly. However, it is
a very reasonable tagger to use as a default, if a more advanced tagger fails to deter-
mine a token’s tag. When used in conjunction with other taggers, NN_CD_Tagger can
significantly improve performance.

4.2. Unigram Tagging

The UnigramTagger class implements a simple statistical tagging algorithm: for each
token, it assigns the tag that is most likely for that token’s type. For example, it will
assign the tag "J]J" to any occurrence of the word "frequent," since "frequent" is used
as an adjective (e.g. "a frequent word") more often than it is used as a verb (e.g. "I
frequent this cafe").

Before a UnigramTagger can be used to tag data, it must be trained on a training
corpus. It uses this corpus to determine which tags are most common for each word.
UnigramTaggers are trained using the train method, which takes a tagged corpus:

’train.txt’ is a tagged training corpus

>>> tagged_text str = open(‘train.txt’).read()

>>> train_toks = TaggedTokenizer().tokenize(tagged_text str)
>>> tagger = UnigramTagger()

>>> tagger.train(train_toks)

Once a UnigramTagger has been trained, the tag can be used to tag untagged cor-
pera:

>>> tokens = WSTokenizer().tokenize(text_str)

>>> tagger.tag(tokens)

[John’’'NN'@[0w], 'saw’/'VB'@[1w], 'the' /AT @[2w],
'‘book’/’NN'@[3w], 'on/IN'@[4w], 'the’’AT'@[5w], ...]

UnigramTagger will assign the default tag None to any token whose type was not
encountered in the training data.

Note that, like almost all statistical taggers, the performance of UnigramTagger is
highly dependent on the quality of its training set. In particular, if the training set is
too small, it will not be able to reliably estimate the most likely tag for each word.
Performance will also suffer if the training set is significantly different than the texts
we wish to tag.

4.3. Nth Order Tagging

The NthOrderTagger class implements a more advanced statistical tagging algo-
rithm. In addition to considering the token’s type, it also considers the part-of-speech
tags of the n preceding tokens.

To decide which tag to assign to a token, NthOrderTagger first constructs a context
for the token. This context consists of the token’s type, along with the part-of-speech
tags of the n preceding tags. It then picks the tag which is most likely for that context.
Note that a Oth order tagger is equivalent to a unigram tagger, since the context used
to tag a token is just its type. 1st order taggers are sometimes called bigram taggers,
and 2nd order taggers are called trigram taggers.

5

NthOrderTagger uses a tagged training corpus to determine WKW piartabf Bigeeuly
tag is most likely for each context:

>>> train_toks = TaggedTokenizer().tokenize(tagged_text_str)
>>> tagger = NthOrderTagger(3) # 3rd order tagger
>>> tagger.train(train_toks)

Once an NthOrderTagger has been trained, it can be used to tag untagged corpora:

>>> tokens = WSTokenizer().tokenize(text_str)

>>> tagger.tag(tokens)

[John’’'NN'@[0w], 'saw’/'VB'@[1w], 'the' /AT @[2w],
'‘book’/’NN'@[3w], 'on/IN'@[4w], 'the’’AT' @[5w], ...]

NthOrderTagger will assign the default tag None to any token whose context was
not encountered in the training data.

Note that as n gets larger, the specificity of the contexts increases; and with it, the
chance that the data we wish to tag will contain contexts that were not present in
the training data. Thus, there is a trade-off between the accuracy and the coverage
of our results. This is a common type of trade-off in natural language processing. It
is closely related to the precision/recall trade-off that we’ll encounter later when we
discuss information retrieval.

4.4. Combining Taggers

One way to address the trade-off between accuracy and coverage is to use the more
accurate algorithms when we can, but to fall back on algorithms with wider coverage
when necessary. For example, we could combine the results of a 1st order tagger, a
Oth order tagger, and an NN_CD_Tagger, as follows:

1. Try tagging the token with the 1st order tagger.

2. If the 1st order tagger is unable to find a tag for the token, try finding a tag
with the Oth order tagger.

3. If the Oth order tagger is also unable to find a tag, use the NN_CD_Tagger to
tind a tag.

NLTK defines the BackoffTagger class for combining taggers in this way. A
BackoffTagger is constructed from an ordered list of one or more subtaggers. For
each token in the input, the BackoffTagger uses the result of the first tagger in the
list that successfully found a tag. Taggers indicate that they are unable to tag a token
by assigning it the special tag None. We can use a BackoffTagger to implement the
strategy proposed above:

>>> train_toks = TaggedTokenizer().tokenize(tagged_text_str)

Construct the taggers

>>> taggerl NthOrderTagger(1) # 1st order tagger
>>> tagger2 UnigramTagger() # Oth order tagger
>>> tagger3 NN_CD_Tagger()

Train the taggers
>>> taggerl.train(train_toks)

>>> tagger2.train(train_toks) NLTK Tutorial: Tagging

Combine the taggers
>>> tagger = BackoffTagger([taggerl, tagger2, tagger3])

Note that the order in which the taggers are given to BackoffTagger is important:
the taggers should be listed in the order that they should be tried. This typically
means that more specific taggers should be listed before less specific taggers.

Having defined a combined tagger, we can use it to tag new corpora:

>>> tokens = TaggedTokenizer().tokenize(tagged text_str)
>>> tagger.tag(tokens)

[John’’NN'@[0w], 'saw’/'VB'@[1w], 'the’/'AT' @[2w],
'book’’NN'@[3w], 'on’/IN'@[4w], 'the' AT @[5w], ...]

5. Tagging: A Closer Look

In the next five sections, we will discuss how each of the taggers introduced in the
previous section are implemented. This discussion serves several purposes:

e It demonstrates how to write classes implementing the interfaces defined by
NLTK.

» It provides you with a better understanding of the algorithms and data structures
underlying each approach to tagging.

« It gives you a chance to see some of the code used to implement NLTK. We have
tried hard to ensure that the implementation of every class in NLTK is easy to
understand.

Before you read this section, you may wish to read the tutorial " Writing Classes For
NLTK", which describes how to create classes that interface with the toolkit.

6. Sequential Taggers

The four taggers discussed in this tutorial are implemented as sequential taggers. A
sequential tagger is a tagger that:

1. Assigns tags to one token at a time, starting with the first token of the text,
and proceeding in sequential order.

2. Decides which tag to assign a token on the basis of that token, the tokens that
preceed it, and the predicted tags for the tokens that preceed it.

To capture this commonality, we define a common base class, SequentialTagger
This base class defines tag using a new method, tag_next , which returns the appro-
priate tag for the next token. However, SequentialTagger does not implement this
new method itself. Instead, each tagger subclass provides its own implementation.

In addition to capturing the commonality between the four taggers, the
SequentialTagger class has another advantage: it will allow us to define
BackoffTagger in such a way that each subtagger can use the predictions made b;

the other taggers as context for deciding which tags to assign.ISéd Bakikoffdbglgeg tiog
more details.

6.1. SequentialTagger.tag_next

The tag_next method decides which tag to assign a token, given the list of tagged
tokens that preceeds it. It takes two arguments: a list of tagged tokens preceeding the
token to be tagged, and the token to be tagged; and it returns the appropriate tag for
that token.

6.2. SequentialTagger.tag

The implementation of the tag method is relatively streight forward. It simply loops
through the untagged text, calling tag_next for each token. It uses the result of each
call to tag_next to create a tagged version of that token, and collects these together
to form the tagged text.

def tag(self, text):
tagged text = []

for token in text:
tag = self.next_tag(tagged_text, token)
tagged_token = Token(TaggedType(token.type(), tag), token.loc())
tagged_text.append(tagged_token)

return tagged text

6.3. The SequentialTagger Implementation

The complete listing for SequentialTagger is:

class SequentialTagger(Taggerl):

def next_tag(self, tagged_tokens, next_token):
assert 0, "next _tag not defined by SequentialTagger subclass"

def tag(self, text):
tagged text =]

Tag each token, in sequential order.
for token in text:
Get the tag for the next token.
tag = self.next_tag(tagged_text, token)

Use tag to build a tagged token, and add it to tagged text.
tagged_token = Token(TaggedType(token.type(), tag), token.loc())
tagged_text.append(tagged_token)

return tagged_text

Figure 2. The SequentialTagger Implementation

Note that SequentialTagger requires that subclasses define thd.Tdg Ingrtial rdegigod
otherwise, the assert statement will raise an exception when the user tries to tag a
text.

6.4. Subclasses

The next four sections show how the SequentialTagger base class can be used to
define NN_CD_Tagger, UnigramTagger , NthOrderTagger , and BackoffTagger

7. NN_CD_Tagger

NN_CD_Tagger assigns the tag "CD" to any token whose type appears to be a number;
and "NN" to any other token. It uses a simple regular expression to test whether a
token’s type is a number:

PA[0-9]+(.[0-9]+)?$’

This regular expression matches one or more digits, followed by an optional period
and one or more digits (e.g., "12" or "732.42 "). Note the use of """ (which matches
the beginning of a string) and "$" (which matches the end of a string) to ensure that
the regular expression will only match complete token types.

Since NN_CD_Tagger is a subclass of SequentialTagger , it just needs to define the
next_tag method. In the case of NN_CD_Tagger, the next_tag method is quite sim-
ple:

def next_tag(self, tagged_tokens, next_token):
if re.match(r~[0-9]+(.[0-9]+)?%’, next_token.type()):
return 'CD’
else:
return ‘NN’

Since NN_CD_Taggers are stateless, and have no customization parameters, the
NN_CD_Tagger constructor is empty:

def __init__ (self): pass

The complete listing for the NN_CD_Tagger class is:

class NN_CD_Tagger(SequentialTagger):
def __init__ (self): pass

def next_tag(self, tagged tokens, next token):
Assign the 'CD’ tag for numbers; and 'NN’ for anything else.
if re.match(r~[0-9]+(.[0-9]+)?%’, next_token.type()):
return 'CD’
else:
return 'NN’

Figure 3. The NN_CD_Tagger Implementation

Note that NN_CD_Tagger does not define tag . When the tag MidtKddtiviohlBggthe
definition given by SequentialTagger =~ will be used.

8. UnigramTagger

UnigramTagger tags each token with the tag that is most likely to go with the token’s
type. It uses a training corpus to decide which tag is most likely for each type. In
particular, it assumes that the tag that occurs most frequently with a type is the most
likely tag for that type. For example, if the training corpus contains the word "track"
as a noun 18 times, and as a verb 7 times, then it will assign the noun tag to any
tokens whose type is "track."

UnigramTagger uses a ConditionalFreqDist to record the most likely tag for each
type. > The train method constructs this conditional frequency distribution from a
training corpus.

8.1. Training the Unigram Tagger

Tagging is a prediction problem. In particular, the outcome we are interested in is
the tag; and the context that we will use to predict the outcome is the token’s type.
So we will construct a ConditionalFregDist whose samples are tags, and whose
conditions are token types:

def train(self, tagged_tokens):
for token in tagged_tokens:
outcome = token.type().tag()
context = token.type().base()
self._freqdist[context].inc(outcome)

8.2. Tagging with the Unigram Tagger

To find the most likely tag for a given token, we can use the the indexing operator to
access the FreqDist for the appropriate context; and use the max method to find the
most likely outcome for that frequency distribution. For example, we could find the
most likely tag for the base type "bank" as follows:

>>> freqdist[’bank’].max()
IN N!

The next_tag method must decide which tag is most likely for a given token. It
simply consults the tagger’s conditional frequency distribution to find the tag that is
most likely for the tokens’s type.

def next_tag(self, tagged_tokens, next_token):
context = next_token.type()
return self._freqdist[context].max()

Note: If a context was not encountered in the training corpus, then the frequency dis-
tribution for that context will be empty; so max() will return None. Thus, next_tag will
return None as for any token whose type was not encountered in the training corpus.

10

NLTK Tutorial: Tagging

8.3. Initializing the Unigram Tagger

The constructor for UnigramTagger simply initializes self._freqdist with a new
conditional frequency distribution.

def __init_ (self):
self._freqdist = probability.ConditionalFregDist()

8.4. The UnigramTagger Implementation

The complete listing for the UnigramTagger class is:

class UnigramTagger(Taggerl):
class UnigramTagger(SequentialTagger):
def __init__ (self):
self._freqdist = ConditionalFreqDist()

def train(self, tagged_tokens):
for token in tagged_tokens:
context = token.type().base()
feature = token.type().tag()
self._freqdist[context].inc(feature)

def next_tag(self, tagged tokens, next token):
context = next_token.type()
return self._freqdist[context].max()

Figure 4. The UnigramTagger Implementation

9. NthOrderTagger

The NthOrderTagger is a generalization of the UnigramTagger . Instead of using the
token’s base type as a context, it uses a tuple consisting of the token’s base type and
the tags of the n preceding tokens. This generalization creates two new issues.

First, we must decide how to handle the first n tokens, since they do not have n pre-
ceding tokens. NthOrderTagger simply uses the tags that are available. For example,
in a 3rd order tagger, the context of the second token will contain only the token’s
type and the first token’s tag. Another option would be to simply ignore the first n
tokens. As it turns out, which approach we take will not have much of an impact,
since n (the order of the tagger) is generally much less than n__ (the number of
training samples).

The second issue is that, when tagging a text, we do not have access the the actual
tags of the n preceding tokens. However, we do have access to our predicted values
for these tags. NthOrderTagger uses these predicted tags, since they are likely to be

11

correct. Assuming that our predictions are good, the use of prédidkd wagisihsteaciof
actual tags will have a relatively minor impact on performance.

9.1. Initializing the Nth Order Tagger

Having addressed these two issues, we can examine the implementation of
the NthOrderTagger . The constructor simply records n, and constructs a new
conditional frequency distribution:

def __init_ (self, n):
self. n = n
self._freqdist = probability.ConditionalFregDist()

9.2. Training the Nth Order Tagger

To train the NthOrderTagger , we examine each token, and increment the count of
the tag for the appropriate context. For contexts, we use a tuple consisting of the n
previous tags and the current token’s base type. We use a variable called prev_tags
to record the rpevious n tags; and update it after examining each token.

def train(self, tagged_tokens):
prev_tags is a list of the previous n tags that we've assigned.
prev_tags = []

for token in tagged_tokens:
context = tuple(prev_tags + [token.type().base()])
feature = token.type().tag()
self._freqdist[context].inc(feature)

Update prev_tags

prev_tags.append(token.type().tag())

if len(prev_tags) == (self._n+1):
del prev_tags[O]

9.3. Tagging with the Nth Order Tagger

As with the UnigramTagger , we can find the most likely tag for each token by using
the max method for the frequency distribution with the appropriate context. But in-
stead of using each token’s base type as a context, we use a tuple consisting of the n
previous predicted tags and the token’s base type.

def next_tag(self, tagged_tokens, next_token):
Find the tags of the n previous tokens.
prev_tags = []
start = max(len(tagged_tokens) - self._n, 0)
for token in tagged_tokens[start:]:
prev_tags.append(token.type().tag())

Return the most likely tag for the token’s context.

context = tuple(prev_tags + [next_token.type()])
return self._freqdist[context].max()

12

9.4. The NthOrderTagger Implementation NLTK Tutorial: Tugging
The complete listing for the NthOrderTagger class is:

class NthOrderTagger(SequentialTagger):
def __init_ (self, n):
self. n = n
self._freqdist = CFFregDist()

def train(self, tagged_tokens):
prev_tags is a list of the previous n tags that we've assigned.
prev_tags = []

for token in tagged_tokens:
context = tuple(prev_tags + [token.type().base()])
feature = token.type().tag()
self._freqdist[context].inc(feature)

Update prev_tags

prev_tags.append(token.type().tag())

if len(prev_tags) == (self._n+1):
del prev_tags[O]

def next_tag(self, tagged_tokens, next_token):
Find the tags of the n previous tokens.
prev_tags = []
start = max(len(tagged_tokens) - self._n, 0)
for token in tagged_tokens|[start:]:
prev_tags.append(token.type().tag())

Return the most likely tag for the token’s context.
context = tuple(prev_tags + [next_token.type()])
return self._freqdist[context].max()

Figure 5. The NthOrderTagger Implementation

10. BackoffTagger

The BackoffTagger is used to combine the results of a list of subtaggers. For each
token to be tagged, the BackoffTagger consults each subtagger, in order. Each token
is assigned the first non-None tag returned by a subtagger for that token. If all of the
subtaggers return the tag None for a token, then BackoffTagger =~ will assign it the tag
None.

10.1. Initializing a Backoff Tagger

The BackoffTagger constructor simply records the list of subtaggers.

def __init_ (self, subtaggers):
self._taggers = subtaggers

13

10.2. Tagging with the Backoff Tagger NLTK Tutorial: Tagging

The implementation of BackoffTagger is relatively straight-forward. Its next_tag
method simply calls each subtagger’s next_tag method, in order; and returns the
tirst non-None tag produced by a subtagger.

def next_tag(self, tagged tokens, next token):
for subtagger in self._subtaggers:
tag = subtagger.next_tag(tagged_tokens, next token)
if tag is not None:
return tag

Default to None if all subtaggers return None.
return None

10.3. The BackoffTagger Implementation
The complete listing for the BackoffTagger class is:

class BackoffTagger(SequentialTagger):
def __init__ (self, subtaggers):
self._subtaggers = subtaggers

def next_tag(self, tagged_tokens, next_token):
for subtagger in self._subtaggers:
tag = subtagger.next_tag(tagged_tokens, next_token)
if tag is not None:
return tag

Default to None if all subtaggers return None.
return None

Figure 6. The BackoffTagger Implementation

11. Exercises

11.1. Combining Taggers with BackoffTagger

There is typically a trade-off between the accuracy and coverage for taggers: taggers
that use more specific contexts usually produce more accurate results, when they
have seen those contexts in the training data; but because the training data is lim-
ited, they are less likely to encounter each context. The BackoffTagger addresses
this problem by trying taggers with more specific contexts first; and falling back to
the more general taggers when necessary. In this exercise, we examine the effects of
using BackoffTagger

1. Create an NN_CD_Tagger, a UnigramTagger ,and a NthOrderTagger . Train the
UnigramTagger ,and the NthOrderTagger using a tagged section of the Brown
corpus.

14

2. NLTK Tutorial: Tagging

Test the performance of each tagger, using a tagged section of the Brown cor-
pus. Record the accuracy of the tagger (the percentage of tokens that are cor-
rectly tagged). Be sure to use a different section of the corpus for testing than
you used for training.

3. Use BackoffTagger to create three different combinations of the basic tag-
gers. Test the accuracy of each combined tagger. Which combinations give the
most improvement?

4. Try repeating steps 1-3 with a different sized training corpus. How does it
affect your results?

11.2. Tagger Context

NthOrderParser chooses a tag for a token based on its type and the tags of the n
preceeding tokens. This is a common context to use for parsing, but ceratinly not the
only possible context.

Construct a new tagger, subclassed from SequentialTagger , that uses a different
context. If your tagger’s context contains multiple elements, then you should com-
bine them in a tuple (see NthOrderTagger for an example of this). Some possibilities
for elements to include are:

» The base type of the current token, or of a previous token.

e The length of the current token’s type, or of a previous token’s type.

o The first letter of the current token’s type, or of a previous token’s type.
» The tag a previous token.

Try to choose context elements that you believe will help the tagger decide which
tag is appropriate. Keep in mind the trade-off between more specific taggers with
accurate results; and more general taggers with broader coverage.

Use BackoffTagger to combine your tagger with other taggers. How does the com-
bined tagger’s accuracy compare to the basic tagger? How does the combined tag-
ger’s accuracy compare to the combined taggers you created in the previous exer-
cise?

11.3. Reverse Sequential Taggers

Since sequential taggers tag tokens in order, one at a time, they can only use the
predicted tags to the left of the current token to decide what tag to assign to a token.
But in some cases, the right context can provide more information about what tag
should be used. A reverse sequential tagger is a tagger that:

1. Assigns tags to one token at a time, starting with the last token of the text, and
proceeding in right-to-left order.

2. Decides which tag to assign a token on the basis of that token, the tokens that

follow it, and the predicted tags for the tokens that follow it. i5

There is no need to create new classes to perform reverse sequential tagging. By
reversing texts at appropriate times, we can use sequential tagging classes to perform
reverse sequential tagging. In particular, we should reverse the training text before
we train the tagger; and reverse the text that we wish to tag both before and after we
use the sequential tagger.

Use this technique to create a first order reverse sequential tagger. Measure its accu-
racy on a tagged section of the Brown corpus. Be sure to use a different section of the
corpus for testing than you used for training. How does its accuracy compare to a
first order sequential tagger, using the same training data and test data?

11.4. Processing Individual Sentences

[to be written] Write a modified nth order tagger, that ignores tags that are in a pre-
vious sentence. E.g., for a 3nd order tagger, if the previous 3 words were "dog/NN
./. A/DT", then just use "DT" and the current token as context.

11.5. Alternatives to Backoff

[to be written] Create a new kind of tagger that combines 2 or more subtaggers.

Index

accuracy, 15

base type, 3

bigram taggers, 5

Brown Corpus tag set, 2
context, 5

Part-of-speech tagging, 2
precision/recall trade-off, 6
sequential tagger, 7
subtaggers, 6, 13

tag, 3

tag set, 2

tagging, 2

tags, 2

training corpus, 5
trigram taggers, 5

16

Notes NLTK Tutorial: Tagging

1. We considered using a conditional probability distribution, instead of a condi-
tional frequency distribution. However, for most probability distributions, the
maximum probability sample is always equal to the maximum frequency sam-
ple in the underlying frequency distributions. We decided that the additional
complexity involved in using ConditionalProbDist was not justified.

2. See the probability tutorial for information about constructing and using fre-
quency distributions.

17

