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Grammatical and statistical approaches

I The rules governing the generation of linguistic events.
Grammatical approaches are powerful in limited domains —
but they are not always robust.

I The assignment of probabilities to linguistic events. Statistical
approaches are more general but typically more shallow.

I Estimate the parameters of statistical models from large text
corpora

I n-gram models — directly assign probabilities to word
sequences
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Two extremes...

Every time I fire a linguist the error rates go down.

Fred Jelinek, former head of the IBM speech recognition research
group (1988)

But it must be recognized that the notion “probability of
a sentence” is an entirely useless one, under any known
interpretation of the term.

Noam Chomsky (1969)
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Guess the next word

I Warning of big fall in house

prices

I Variety reports Sean Connery may be retiring

I Arsenal stranded in Trondheim

Guessing the next word is an essential component of many tasks
such as speech recognition, handwriting recognition, and
context-sensitive spelling correction
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How to make a good guess

I A word is easy to guess if it is more probable than any other
word

I Order is important:

I Variety reports Sean Connery may be
I Variety Sean may reports Connery be
I be may Connery Sean reports Variety

I Context helps:

I ...
I Warning...
I Warning of...
I Warning of big...
I Warning of big fall...
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Counting words

I The best way to guess the next word is to first try the most
probable, then the second-most probable, and so on

I So we need to estimate the probability of a word

I To estimate word probabilities we can count words—how
many tokens of each type?

I More generally we can count n-grams not just words
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Two simple approaches to language modelling

Sequence Estimate the probability of a word given the recent
sequence of words (eg resonance likely to follow
nuclear magnetic)
Used for speech recognition language modelling,
tagging, machine translation

Topic Estimate the probability of a word given the
distribution of words in a document (eg Brown likely
to occur in a document containing Blair Prime
Chancellor Minister Downing leadership)
Used for text retrieval, document classification
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Maximum likelihood estimation

n-grams

I An n-gram is a sequence of n words

I Eg: warning of big fall in house prices

I Unigrams: warning ; of ; big ; fall ; in ; house ; prices
I Bigrams: warning of ; of big ; big fall ; fall in ; in house ;

house prices
I Trigrams: warning of big ; of big fall ; big fall in; fall in house

; in house prices
I 4-grams: warning of big fall ; of big fall in ; big fall in house ;

fall in house prices
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Example: BBC news transcripts

The THISL corpus of transcribed BBC TV and radio news
programmes, containing 7,488,445 word tokens.
Counts and relative frequencies of eight most frequent words:

word count rel freq. word count rel freq.

the 394 481 0.0527 and 133 962 0.0179

to 240 001 0.0320 as 109 217 0.0146

a 225 506 0.0301 be 84 020 0.0112

in 177 997 0.0238 that 69 265 0.0092
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Probability of a word sequence

I wonderland is an infrequent word... unless we have just seen
the words alice in

I We can better estimate the probability of a word if we take
into account the word sequence

I Consider a string of N words: w1,w2,w3, . . . ,wN−1,wN .

I Decompose the probability of the string as follows

P(w1,w2,w3, . . . ,wN−1,wN) =

P(w1)P(w2|w1)P(w3|w1,w2)P(w4|w1,w2,w3) . . .

. . .P(wN−1|w1,w2, . . . ,wN−2)P(wN |w1,w2, . . . ,wN−2,wN−1)
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n-gram approximation
I Taking all the previous words into account results in a huge

table of probabilities

I The Markov assumption — consider only the previous (n-1)
words

I Bigram (n=2) has one word of context:

P(w1,w2,w3, . . . ,wN−1,wN) =

P(w1)P(w2|w1)P(w3|w2) . . .P(wN−1|wN−2)P(wN |wN−1)

P(w3|w1,w2) ∼ P(w3|w2)

P(wN |w1,w2, . . . ,wN−2,wN−1) ∼ P(wN |wN−1)

I View a bigram as a simple Markov chain — or a (weighted)
finite state machine with a state for each word
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Example bigrams

P(•|fast) in the ICSI meetings corpus.

bigram prob log(prob)

fast [end-sent] 0.202 -0.695
fast enough 0.049 -1.312
fast forward 0.030 -1.530
fast and 0.027 -1.571
fast because 0.019 -1.723
fast that 0.012 -1.934
fast the 0.011 -1.952

Bigram probabilities are usually very small — often use log(prob)
to avoid floating point underflow
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Estimating bigram probabilities

I The relative frequency estimate of a bigram is given by:

p(w |v) =
c(v ,w)∑
w ′ c(v ,w ′)

=
c(v ,w)

c(v)

c(v ,w) is the frequency (count) of word pair (v ,w)

I Consider a vocabulary of 50 000 words (typical for a speech
recognition system): 2.5× 109 possible bigrams; 1.25× 1014

possible trigrams. Therefore most trigrams and bigrams will
not be observed in a given corpus

I For a given corpus, c(v ,w) = 0 for most word pairs, hence
most n-grams estimated in this way will be 0!
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Maximum likelihood estimation

Estimating n-gram probabilities

I Notation: wN−1
N−n+1 represents (n − 1) words of context,

wN−(n−1),wN−(n−2), . . . ,wN−1 [N − (n − 1) = N − n + 1]

I General estimate of n-gram probabilities:

p(wN |wN−1
N−n+1) =

c(wN−1
N−n+1,wN)

c(wN−1
N−n+1)

I This ratio is referred to as the relative frequency

I Estimating probabilities with relative frequencies is an
example of maximum likelihood estimation

I Jurafsky and Martin (2nd ed: sec 4.3.1; 1st ed: p.202–206)
for examples of n-gram generation of text
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I Jurafsky and Martin (2nd ed: sec 4.3.1; 1st ed: p.202–206)
for examples of n-gram generation of text
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The Zero Probability Problem

I If an event has a zero probability then we are saying it can
never occur!

I Since probabilities sum to 1 this is equivalent to saying that
the probabilities of observed n-grams are over-estimated

I Solution: Smooth the n-gram probabilities so that every event
has probability greater than zero

I Discounting — reserve some probability for unseen events
I Smoothing with lower-level n-grams — use the most precise

model allowed by the data
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Laplace’s law — add one
Consider estimating a unigram probability P(wi ) (vocabulary size
is V , total number of word tokens is M):

I Unsmoothed maximum likelihood estimate:

PML(wi ) =
c(wi )∑V

x=1 c(wx)
=

c(wi )

M

I Could just add one to each count (so no more zero counts)
and renormalize:

PLAP(wi ) =
c(wi ) + 1∑V

x=1(c(wx) + 1)
=

c(wi ) + 1

M + V

I This does not work very well, particularly if there are a lot of
unseen events (eg if applied to bigram or trigram estimation)

I Better results if λ < 1 is added to the counts (eg λ = 1/2)
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Discounting

I Discounting schemes reduce, or discount, the probability
estimates of observed events

I The freed probability mass is used for unseen events

I What is the best way to estimate the probability of an unseen
event? — Look at the distribution of events seen precisely
once!

I Many discounting schemes: Good-Turing, Witten-Bell,
Absolute. All work similarly in practice (although there are
some sophistications in their exact implementation).
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Absolute discounting

I Subtract a constant k from each non-zero count and
redistribute over unseen events (zero counts)

I Let c(e) be the count of event e, and ĉ(e) be the discounted
count:

ĉ(e) =


c(e)− k if c(e) > 0
k

u0
×

∑
r

ur if c(e) = 0 ,

where ui is the number of events with a count of i .

I The value of k is typically based on u1 and u2, eg
k ∼ u1/(u1 + 2u2)

I Forms the basis of Kneser-Ney discounting (widely used in
machine translation and speech recognition)
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Interpolation

I Linearly combine n-gram models — discounted estimates of
lower-order n-grams more reliable than directly estimating
probabilities of unseen higher-order n-grams.

I For a trigram (u, v ,w), smoothly estimate p(w |u, v) as:

pint(w |u, v) = λ3p̂(w |u, v) + λ2p̂(w |v) + λ1p̂(w) + λ0

Such that ∑
i

λi = 1

I Estimate λ to maximize the likelihood of a held-out corpus
(separate from the main training corpus)

I λ can be context-independent or a function of the history
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Backing off

I Rather than combining different order models, choose the
most appropriate n-gram level

I Probability mass reserved from discounting is then partitioned
among lower-order n-grams (and so on, recursively)

I In interpolation always use lower order n-gram information

I In backoff if the trigram counts are above a threshold (eg 1)
only use the trigram estimates

Steve Renals s.renals@ed.ac.uk n-gram models



Outline
Grammatical and statistical approaches

Sequence models
Discounting and smoothing

Applications
Summary

Language modelling

I In speech recognition, many word sequences can match the
acoustics reasonably well (especially in noisy conditions)

I Can constrain the problem by giving more weight to more
probable word sequences

I Combine acoustic model (matching word sequence with the
acoustics) with language model (probability of a word
sequence).

I Language model: estimate P(w1, . . . ,wn) using n-grams

I This component is used in all large vocabulary speech
recognition systems
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Context-sensitive spelling correction

I Homophones: Their is a house in New Orleans

I Typos: Three is a house in New Orleans

I An n-gram model is likely to have:

P(is|there) > P(is|their)

P(is|there) > P(is|three)

I Use this intuition to design a context-sensitive spelling
corrector
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Summary

I Reading: Jurafsky and Martin, chapter 6

I Statistical models of language by directly considering the
probabilities of word sequences — n-grams

I The zero probability problem — estimating the probabilities of
unseen words and and word sequences

I Discounting and smoothing

I Lots more about n-grams next semester in Empirical Methods
in NLP
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