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80% chance agent 
moves one space in its 
chosen direction, 
otherwise 10% chance 
(for each side) to move 
one space orthogonally

?

If agent hits a wall it 
stays where it is.

Rules of the game:
Treasure hunt game:
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80% chance agent 
moves in chosen 
direction 
10% for either side

?

If agent gets to the gold, it gets a 
reward of 100 (and game ends)

If agent gets to the monster, it gets a 
reward of -100 (and game ends)
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80% chance agent 
moves in chosen 
direction 
10% for either side

The following shows the optimal policy:  
if R(s) = -4 for the non-terminal states

+100

-100

⇡⇤(s)

A policy is a mapping from states to actions

An optimal policy is a policy that yields the 
highest possible expected utility
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80% chance agent 
moves in chosen 
direction 
10% for either side

More specifically:  
agent does not know transition probabilities:
and does not know the reward function:

P (s0|s, a)
R(s)

Assume the Agent knows nothing about the environment:  
The Agent does not know where the gold or monster are (or even if there 
is gold or a monster), how big the maze is, where the walls are, etc. 

???



U(s) = R(s) + �max

a

X

s0

P (s0|s, a)U(s0)

P (s0|s, a) R(s)and
are critical information for computing the 
Utility of each state:

can we still infer, or learn, this Utility function, 
without prior knowledge of transition probabilities 
and the rewards?

how valuable is the future (0 to 1)?

Utility Function (or value of each state)



Three main types of machine learning

Supervised Learning:  
agent learns with a Teacher (learns with labelled data)

Unsupervised Learning:  
agent must learn without a Teacher (unlabelled data), 
find hidden patterns in data

Reinforcement Learning:  
agent’s actions are rewarded or punished (only at 
certain times, not necessarily continuously) and then 
must learn the actions that maximise reward over 
time



Reinforcement Learning: Agent must balance the trade off 
between Exploration and Exploitation

First explore….



Reward Found!



Now Exploit!

but there may be bigger rewards still 
out there that we haven’t found yet



Exploration vs. Exploitation: trade off between gaining reward 
now and searching for potential rewards in the future



Exploration:

Exploitation:

 vs.

Trying new things (risky)

Going with what you know (safe)
Are you going to go to the same restaurant 

where you know you will get adequate “food”?

Or are you going to be adventurous 
and try a new Korean restaurant? 
(which may be amazing or awful)



U(s)i+1 = R(s) + �
X

s0

P (s0|s,⇡(s))Ui(s
0)

use our models of the Reward 
Function and Transition 

Probabilities: estimates obtained 
from experience

fixed policy

The agent can update its utility function, from 
experience, using Policy Iteration:

after sufficient experience with the fixed policy, we 
can try to update it, using the new estimate of U(s):

⇡(s) = argmax

a

X

s0

P (s0|s, a)U(s)



Basic Reinforcement Learning Procedure:

1. Start with a Fixed Policy

2. Try the Policy: run a number of trials (rollouts) 
using the policy
3. Improve your model of the environment, 
based on the experience you collect in step 2 

4. Update your policy and repeat from step 2



Instead of updating utilities as before: 

U+
(s)i+1 = R(s) + �max

a
f

 
X

s0

P (s0|s, a)U+
i (s0), N(s, a)

!

U(s)i+1 = R(s) + �max

a

X

s0

P (s0|s, a)Ui(s
0
)

number of times action a 
has been tried in state s

some fixed reward
number of 
times we want 
the agent to try 
an action in a 
statef(u, n) =

(
R+, if n < Ne

u, otherwise

with an exploration 
function f that depends 

on the number of 
experiences:

Use the following equation:

Encouraging Exploration (reward visiting unknown states)



However, transition policies can be difficult to estimate. How 
many parameters are required for                  ?P (s0|s, a)

assuming n states, and m actions per state (and assuming 
each state may transition into any other state):

Thus far we have discussed model-based Reinforcement 
Learning: we learn a model of the environment through 
experience. In particular we learn: P (s0|s, a) and R(s)

there are n2m numbers to learn.  

Also, smaller probabilities (rare occurrences) will be 
harder to learn (requiring many trials before 
experiencing it sufficiently)



The agent tries to learn U(s) without learning explicit models 
of transition probabilities 

s0 s1

s4

For example, with 
sufficient experience, 
the agent might infer:

Model-Free Reinforcement Learning

+100

-100

U(s9) is approximately 
γ100 - 4

s9

U(s0) is approximately 
γU(s4) - 4

U(s8) is approximately 
γU(s9) - 4

s8

This can work because utilities of adjacent states are 
related in some way: The utility experienced in a new 
state provides some information about the utility of the 
previous state.



This implies a learning rule:

whenever a transition occurs from s to s’, we update U(s): 
Ui+1(s) ⇡ R(s) + �Ui(s

0)



This implies a general Temporal Difference learning rule:

Ui+1(s) = Ui(s) + ↵(R(s) + �Ui(s
0)� Ui(s))

whenever a transition occurs from s to s’, we update U(s): 

U(s) is slightly updated, based on change 
in utility to the next state

learning rate: a small 
number (<1) that controls 
how fast U(s) changes in 

each iteration  

no need to learn transition probabilities!



We can learn the Utility function U(s), without transition 
probabilities, however we still need them to get the policy??

⇡(s) = argmax

a

X

s0

P (s0|s, a)U(s)



Ui+1(s) = Ui(s) + ↵(R(s) + �Ui(s
0)� Ui(s))

Instead of learning U(s), we can learn the 
Utility of a (state,action) pair: 

⇡(s) = argmax

a
Q(s, a)

Qi+1(s, a) = Qi(s, a) + ↵(R(s) + �max

a0
Qi(s

0, a0)�Qi(s, a))

Policy then becomes:

again no need to learn the transition probability!

Q(s,a) is the expected utility of taking action a in state s

This is called Q-Learning



Some problems with RL in Robotics:
Robotic systems are high-dimensional with continuous states 
and actions. (e.g. Q-Learning quickly becomes intractable)  

The state is typically partially-observable and noisy (difficult to 
estimate true state) 

Gaining experience can be tedious, expensive, dangerous 
(e.g. can damage robot, think about learning to walk!)  

Initial conditions (starting over in same state) are difficult to 
reproduce. 

Some methods may use simulation to aid these problems, but 
simulation is never a substitute for real experience.  

Specifying a good reward function is challenging and may 
require a fair amount of domain knowledge.



To cope with these problems in robotics, we often 
use Policy Search methods:

Start with a reasonable policy (e.g. one you know won’t break 
the robot), and improve it with each trial:

✓i+1 = ✓i + ↵r✓J

policy parameters gradient of 
expected return



We can estimate the gradient via least squares:

r✓J ⇡ (�⇥T�⇥)�1�⇥T�Ĵ

Stack of p 
perturbations:

�Ĵp ⇡ J(✓i +�✓p)� J(✓i)

�✓p
Stack of p influences on 
the return:

For p episodes, and a reference policy    : ✓i



Learning Ball in Cup:



Robot’s state has 20 dimensions:

7 joints, 3 for ball, plus velocities 
for each

action is 7 dim (torque at 
each joint)



Reward Function:

r(tc) = exp(�↵(xc � xb)
2 � ↵(yc � yb)

2
)

otherwise

cup position ball position

time when ball crosses rim downward

r(t) = 0

This reward function already encodes much domain knowledge 
about the task (i.e. it would be significantly more difficult and time 
consuming if the robot needed to learn that the ball must move 
downward into cup)



Policies are encoded as parameterised motor primitives:

a = (✓ + ✏t)
Tµ(s, t)

Dynamic 
movement 
primitive Exploration noise 

(in parameter 
space)

Parameters 
(weights of basis 

functions)



Parameter Update Rule (PoWER):

essentially a more clever way to compute the policy gradient



Reference:
Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning in 
robotics: A survey." The International Journal of Robotics Research (2013)

http://www.dcsc.tudelft.nl/~jkober/research.htm
Videos of ball-in-cup (and some other tasks):

Pancake flipping:
https://www.youtube.com/watch?v=W_gxLKSsSIE

http://www.dcsc.tudelft.nl/~jkober/research.htm
https://www.youtube.com/watch?v=W_gxLKSsSIE

