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From local strategies to routes to maps 

• (From lecture 2) Beacon or 

memory of home view allows 

navigation from a surrounding 

catchment area 

• Multiple beacons or memories 

can be linked together to form 

routes 

 



• If we can combine routes (or close loops in routes)  
by recognising overlapping locations we create a 
graph representation of the world  

• Problem is to reliably recognise when encounter the 
same location: 

– From different approach directions 

– With possible alterations to appearance (e.g. lighting) 

– In ‘wrong place’ according to odometry 

• But not to confuse locations that are different but 
look similar 

• And ideally, to do this with an efficient algorithm. 

From local strategies to routes to maps 



Topological maps 

 

 

• Represent known locations and the connections 
between them as nodes and edges in a graph 

• The edges could represent simple adjacency, the raw 
actions needed to get from one node to the next; or 
direction, distance, path convenience etc. 

• Can determine a possible (or even the optimal) route 
by standard graph search methods 



Example: RAT-SLAM 

•  For each new local view and/or 

pose, store an ‘experience’ node, 

linked to the previous node by a 

transition derived from the self 

motion (experience nodes are like 

rat place cells) 

• Recognise when same view and 

pose occur to close loops in the 

experience map 

• When closing loops, align the 

transitions and poses for geometric 

consistency to correct for drift 



RAT-SLAM •  Both local views and self-motion are 

derived from vision 

• Use different parts of visual field for: 

A: Local view: compare to previously 

stored templates; either recognise or store 

as new template 

B: Rotation estimate: find sideways pixel 

shift that produces best match. 

C: Speed estimate: for best rotation, take 

image difference. 

• In each case reduce image to one-

dimensional scanline of normalised 

intensity across columns. 



RatSLAM Results 2008 

• Using built-in laptop 

webcam, drove for 100 

minutes through 3km by 

1.6km area of Brisbane 

• Visualising the 

‘experience map’ shows 

method produces a fairly 

accurate map that could be 

used for navigation 



Sequence SLAM (Milford 2013) 

Improve matching by looking for sequences  

 



From topological to metric maps 

• A graph in which edges represent the distances and directions 
between locations in consistent global co-ordinates is 
effectively a metric map. 

• We describe the location of the robot and objects in its world 
in some kind of absolute coordinates (e.g. cartesian or polar) 

• For simple robot, moving on ground plane and able to rotate 
on the spot, could consider this as 2 degree of freedom 
configuration space (i.e., where the robot can move to):  

– Only obstacle location matters (not identity) 

– Assume robot is holonomic or can rotate on spot 

– Treat robot as a single point and expand obstacle 
boundaries by robot’s maximum dimension 



Example: Occupancy grid representation 

• Divide space into a regular rectangular grid at some 

specific resolution 

• Mark each grid square as either ‘occupied’, ‘empty’ or 

‘unknown’ 



Topological 
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From metric to topological maps 

• For planning a route, one popular approach is 

to convert a metric map to a topological map 

• Several different methods: 

– Visibility graph 

– Voronoi diagram 

– Cell decomposition 

– Or treat each empty grid square as a node 

• Can then apply standard graph search e.g. A* 



From metric to topological maps 

Visibility graph: edges join all vertices that can ‘see’ 

each other. Defines shortest possible paths. 



From metric to topological maps 

• Voronoi graph – generate edges that are 

equidistant from obstacles, meeting at vertices. 



From metric to topological maps 

• Cell decomposition: define free and occupied 

geometric areas and determine which are adjacent 



Path planning 

• For a graph with nodes connected by edges 

 

 

• f(n) is the “goodness” of the path via node n 

• g(n) is the “cost” of going from the Start to node 
n 

• h(n) is the cost of going from n to the Goal 

• ε is relative weighting of these costs 

• Use c(n,n’): cost from node n to adjacent node n’ 

f(n)=g(n)+εh(n) 



Breadth-first search 

If ε=0, and c(n,n’) is constant for all n (e.g. in grid) then 

breadth first search will find optimal route. 



A* Heuristic Function 

• g*(n) is easy: just sum up the path costs to n 

• h*(n) is tricky 

– But if began with metric map, may know the direct 

distance between any two nodes, even if not what path is 

needed to get between them. 

– Thus a minimal estimate of the remaining cost we can use 

for h*(n) is the direct distance between n and Goal 

f*(n)=g*(n)+h*(n) 

If ε=1, and c(n,n’) is not constant, A* is a more efficient search. 

Like breadth-first except always expand the ‘best’ (least cost) 

node first (note same method with ε=0 is Dijkstra’s algorithm)  



Example: A to E 

 
• But since you’re starting at A and can only look 1 node ahead, 

this is what you see: 
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• Two choices for n: B, D 

• Do both 

– f*(B)=1+2.24=3.24 

– f*(D)=1.4+1.4=2.8 

• Expand the most plausible path first => A-D-?-E 
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• A-D-?-E 

– “stand on D” 

– Can see 2 new nodes: F, E 

– f*(F)=(1.4+1)+1=3.4 

– f*(E)=(1.4+1.4)+0=2.8 

 

• Three paths 

– A-B-?-E >= 3.24 

– A-D-E = 2.8 

– A-D-F-?-E >=3.4 

 

• A-D-E is the winner!  

– Don’t have to look farther because expanded the 
shortest first, others couldn’t possibly do better 
without having negative distances, violations of laws 
of geometry… 
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Planning as optimisation 

• The problem of planning can be formulated as an 

optimisation problem: in state x what is best action u? 

– Robot has goals, but actions have costs 

– Express both as a single ‘pay-off’ function, e.g.,  

 

 

Aim is to maximise the cumulative expected pay-off: 
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Optimal Policy 
• 1-step optimal policy: 

 

 

• Value function of 1-step optimal policy: 

 

 

• T-step optimal policy is defined recursively: 

 

 

 

 

 

• In theory this can sometimes be solved; in practice usually obtain 
the value function by iteration till the approximation converges 
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Summary 
• Local navigation strategies suffice for some robot 

tasks 

• Local strategies can be linked to form routes 

• Routes can be linked to form maps: 

– A map is needed to plan novel routes (exception?) 

• Choice of map representation has many 
consequences: 

– How can it be acquired? 

– How much information must be stored? 

– How can it be used to find novel routes? 
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