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Historically there have been different approaches to 

dealing with the inherent uncertainty in robotics 

 

Model-based 
 

Principled but brittle 

Assume everything is 

known, or engineer robot 

or situation so this is 

approximately true 

sense→plan→act 

Reactive 
Robust and cheap but 

unprincipled 

Assume nothing is known, 

use immediate input for 

control in multiple tight 

feedback loops 

sense→act 

sense→act 

Hybrid 
Best and worst of both ? 

Plan for ideal world, react 

to deal with run-time error 

 

  plan 

sense→act 

Probabilistic 
Principled, robust but 

computationally expensive 

 

Explicitly model what is 

not known 

 

 

sense→  plan → act 
   with  

     uncertainty 



• A control system that includes a world model can interact more 

competently and flexibly with the world, e.g. by planning and 

anticipating. 

 

 

 

 

 

 

 

 

• But an incorrect or unreliable world model can be worse than no 

model. 

• Crucial idea is that you need to know the limits of what you know. 



E.g.Assuming I have a map, where am I? 

• How can a robot know where it is? 

• E.g. determine its pose, [x,y,θ] 

• In general this is a problem of 
position estimation (i.e. same 
methods could apply to external 
tracking or object localisation) 

• Usually, the immediately available 
sensory evidence will not be 
enough to determine position 
precisely and unambiguously. 

• Basic method is to infer location 
from sensor measurements over 
time, while moving in space. 



‘Markov’ localisation 

• Control action u will put the robot in state x, which for a given 
map m should result in sensor measurements, z. 

 

 

 

 

 

 

 

• Markov assumption is that current state sufficiently represents 
the history of all previous states, so that only current control 
action determines the state transition, and new state determines 
the measurement  (i.e., at xt, u1:t-1 and z1:t-1 no longer matter) 

• This is almost always false, but is a very useful approximation 
 



‘Markov’ localisation 

• Control action u will put the robot in state x, which for a given 
map m will result in sensor measurements, z. 

 

 

 

 

 

 

 

• LOCALISATION PROBLEM: Assuming the robot knows 
the map m, the control actions u, and the measurements z, it 
wants to infer its current state (its location or pose) x 
 



Single hypothesis 

 

 

Multiple hypotheses 

 

 

Probability of each grid 

location 

 

 

Probability of each node 

in a topological map 

Representing the robot’s belief Bel(xt) about its current state 

 

Siegwart & Nourbakhsh 2004 



1. Robot starts with equal 
probability for every 
possible location x 

 

2. Measurement z 
indicates robot is near 
a door: get three peaks 
in position estimate 

 

3. Robot moves to the 
right: updates position 
estimate but becomes 
less certain 

 

4. New measurement 
indicates robot is near 
door: this makes one 
possible position more 
likely than the others 



Bayes Filter (1) 
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Bayes 

z  = observation 
u  = action 
x  = state 
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Bayes Theorem 

Conditioned on c 

Normalising term not 

dependent on state x 

Markov 
Measurement z does not 

depend on history 
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Bayes Filter (2) 

Total prob. 

z  = observation 
u  = action 
x  = state 

),|()( :1:1 tttt uzxPxBel 

Markov 
Effect of control u does 

not depend on history 

Normalising term not 

dependent on state x 
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Theorem of total probability 

Conditioned on c 
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Bayes Filter (3) 
z  = observation 
u  = action 
x  = state 
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This describes the belief 

at time t-1 
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Prior state xt-1 does not 

depend on current control ut 
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Markov 
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Bayes Filter Summary 
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u  = action 
x  = state 

),,,|()( 11 tttt zuzuxPxBel 

Markov ),,,|()|( 11 tttt uzuxPxzP 

Markov 
11111 ),,,|(),|()|(  tttttttt dxuzuxPxuxPxzP 

1111

111

),,,|(

),,,,|()|(





ttt

ttttt

dxuzuxP

xuzuxPxzP



Total prob. 

Markov 
111111 ),,,|(),|()|(  tttttttt dxzzuxPxuxPxzP 



• Prediction 

 
Or for discrete state values: 

 

• Correction 

Bayes Filter is usually described as a two 

step process 
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Example: two node topological map 

• Effect of action “go home” 

 

 

 

 

• Perception: P(“see home”|home)=0.7, P(“see home”|away)=0.1 

• If robot starts with Bel(home)=0.2, takes the action “go home”, 

and sees home, what is the new Bel(home)? 

Home Away 

Home Away 
1 

0.9 

0.1 
0 



References: 

Sebastian Thrun, Wolfram Burgard and Dieter Fox, “Probabilistic 

Robotics”, MIT Press, Cambridge MA, 2005 

Roland Siegwart & Illah Nourbakshsh “Introduction to 

Autonomous Robotics” MIT Press, Cambridge MA, 2011 


