Sensing for action

IAR Lecture 3
Barbara Webb
Sensing for Action

- Sensors transduce energy from one form to another
- From the robot control point of view we have some information – a measured value – that represents some property of the world
- This relationship is rarely a direct one:
 E.G. We say the IR sensor is a ‘range’ or ‘distance’ sensor:
 Distance to object →
 Light scattering →
 Amount of light reflected →
 Resistance of sensor element →
 Voltage →
 Analog to Digital Conversion→
 Calculation →
 Distance value

But note! We may not need to know the actual distance to perform the appropriate action, such as “avoid”
Virtual/logical sensors

- An abstraction over the physics of specific sensors
- Task oriented definition: start by defining the property you want for robot control (e.g. ‘person detector’ for a rescue robot)
- Design set of input sources (may include other virtual sensors), and computation (may be in hardware) that produces appropriate output vector

- For robot control purposes can treat as ‘direct’ sensing of desired property
- Within the module, may be able to redesign, use different sensors to obtain same (or improved) effective sensing capability.

- In practice, usually need to take into account the real physics of the sensor
Describing sensors

- **Sensitivity:**
 - ratio of output change to input change
 - Usually a trade-off with *range* (min to max)

- **Resolution:**
 - Limit in resolving power of output scale (note is a property of the measuring *instrument* rather than the sensor)

- **Precision:**
 - Repeatability of measurements (under same conditions)

- **Accuracy:**
 - (lack of) error in measurements
Accuracy

- Sometimes described in terms of the mean of the error (whereas precision relates to the variance of error)
- Calibration can remove some but not all inaccuracy. E.g. for a linear sensor there may remain:
 - Uncertainty about the offset
 - Uncertainty about the slope (% error)
 - Uncertainty about deviations from linearity
- Combined with imprecision, inaccuracy may limit the effective resolution much more than the output scale
- Non-linearity can make resolution dependent on input
Example: IR sensors on the Khepera

Voltage

Real distance to object

Sensor data sheet

10 bit Analog to Digital Conversion

Calculation of distance from reading

between 80-500

\[X = \frac{4080}{Y-20} \]

Estimated distance to object
Describing sensors

• Also need to take into account selectivity:
 – Inaccuracy is often the result of cross-sensitivity to environmental properties other than the target property
 – E.g. many transducers are affected by temperature
 – For IR, the reflectance of the object and ambient light level will alter the ‘distance’ reading
Sonar
Describing in form of a *sensor model*

- E.g. what is the probability distribution of the sensor reading from a range sensor, given the wall distance?

Possible sources of error:

1. Noise in the actual distance measure
2. Person passing
3. Random measurements
4. Maximum range measurements

Thrun (2005)
Describe each error source as a distribution

Measurement noise

\[
P_{\text{hit}}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2} \frac{(z-z_{\text{exp}})^2}{b}}
\]

\(z\) is sensor signal, \(x\) is robot pose, \(m\) is world model, \(\{x,m\}\) define expected \(z_{\text{exp}}\)

Unexpected obstacles

\[
P_{\text{unexp}}(z \mid x, m) = \begin{cases}
\eta \lambda e^{-\lambda z} & z < z_{\text{exp}} \\
0 & \text{otherwise}
\end{cases}
\]

Thrun (2005)
Describe each error source as a distribution

Random measurement

Max range

\[P_{\text{rand}}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}} \]

\[P_{\text{max}}(z \mid x, m) = \begin{cases} 1 & \text{if } z = z_{\text{max}} \\ 0 & \text{otherwise} \end{cases} \]

Thrun (2005)
Combine as a mixture density

Note, this seems to assume we know the real distance, z_{exp}

- May be in context of calibration; use to learn parameters α

- Knowing $P(z|z_{exp})$ can be applied (through Bayes theorem) to determine $P(z_{exp}|z) = P(z|z_{exp})P(z_{exp})/P(z)$ (see later lectures)

Thrun (2005)
Note that this is an explicit example of the ‘probabilistic approach’ – handle noise by explicitly representing it.

For next practical – can you devise a sensor model for the Khepera IR sensor?

What alternative approach might there be?
From lecture 1: how to deal with uncertainty

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Control Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model-based</td>
<td>Assume everything is known, or engineer robot or situation so this is approximately true</td>
<td>sense→plan→act</td>
</tr>
<tr>
<td>Principled but brittle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive</td>
<td>Assume nothing is known, use immediate input for control in multiple tight feedback loops</td>
<td>sense→act</td>
</tr>
<tr>
<td>Robust and cheap but unprincipled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>Plan for ideal world, react to deal with run-time error</td>
<td>plan</td>
</tr>
<tr>
<td>Best and worst of both ?</td>
<td></td>
<td>sense↓→act</td>
</tr>
<tr>
<td>Probabilistic</td>
<td>Explicitly model what is not known</td>
<td>sense→ plan → act with uncertainty</td>
</tr>
</tbody>
</table>
Sensor/signal conditioning

- E.g. linear transformation: \(output = offset + gain \times input \)
- Many signals may need non-linear transformation
- Might need to tune linear or non-linear parameters through learning methods (again, this can be action-relative)
- ‘Intelligence’ might be introduced at this level to make sensing adaptive, i.e., sensor/system itself detects:
 - Is the output a reasonable value (e.g. relative to previous measurements or other sensor reports)?
 - Is the full range being used?
 - Is the sensor stuck at one extreme?
Sensor/signal conditioning

- **Low-pass filtering:**
 - Low-pass: usually against noise or other rapid fluctuations

- **Highpass filtering:**
 - interested in fluctuations not background

Response of *Limulus* sensory neuron to light
Sensor processing

Implies a more complex transformation than conditioning:

• Logic functions (e.g. triggers for action)
• Data reduction (e.g. extracting features)
• Decision making (e.g. classification)
Combining sensors

Sensor “fusion”

Sensor “fashion”

Sensor “fission”
Sensor fusion

The information provided by different sensors might be:

- Complementary: sensors that measure different attributes of same target → Fusion could provide richer description

- Co-operative: can derive new feature by combining several attributes (e.g. triangulation) → Fusion could disambiguate

- Competitive/redundant: different sensors that measure the same attribute → Fusion could provide better estimate of actual value
Sensor fusion

A standard approach is to use a weighted average.

Assume N sensors provide measurements z of property x with some Gaussian distributed noise

$$z_i = x + \epsilon_i, \epsilon_i \approx N(0, \sigma_i)$$

Combined estimate is weighted average:

$$\hat{x} = \sum_{i=1}^{N} w_i z_i, \quad \sum_{i=1}^{N} w_i = 1$$

Maximum likelihood estimation says optimal weighting is:

$$w_i = \frac{1/\sigma_i^2}{\sum_{j=1}^{N} 1/\sigma_j^2}$$

Note there are also adaptive methods that modify the weights over time, e.g. *democratic cue integration*: sensors with values near the combined estimate increase their weights, those further away decrease.
Simple example with two measurements

Robot uses two different sensors to measure distance to a wall:

z_1 with variance σ_1^2

z_2 with variance σ_2^2

Combined estimate:

$$\hat{x} = \frac{1/\sigma_1^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_1 + \frac{1/\sigma_2^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_2$$

Variance of combined estimate –

$$\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

– will be less than that of either single measure

Seigwart & Nourbakhsh, 2004
Can rearrange in terms of successive estimates:

\[
\hat{x} = \frac{1/\sigma_1^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_1 + \frac{1/\sigma_2^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_2
\]

\[
= z_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (z_2 - z_1)
\]

Or in general, updating estimate with the \(k+1\)th measurement:

\[
\hat{x}_{k+1} = \hat{x}_k + K_{k+1} (z_{k+1} - \hat{x}_k)
\]

\[
\sigma_{k+1}^2 = \sigma_k^2 - K_{k+1} \sigma_k^2
\]

\[
K_{k+1} = \frac{\sigma_k^2}{\sigma_k^2 + \sigma_z^2}; \quad \sigma_k^2 = \sigma_1^2; \quad \sigma_z^2 = \sigma_2^2
\]

What about updating successive estimates for a moving robot?

Seigwart & Nourbakhsh, 2004
For a moving robot, can first predict the change, then combine this with the new measurement.

Robot moves at velocity u, with noise w.

$$\frac{dx}{dt} = u + w$$

Our estimate should incorporate the predicted change:

$$\hat{x}_{k'} = \hat{x}_k + u(t_{k+1} - t_k)$$

$$\sigma_{k'}^2 = \sigma_k^2 + \sigma_w^2 [t_{k+1} - t_k]$$

Then update with the measurement:

$$\hat{x}_{k+1} = \hat{x}_{k'} + K_{k+1} (z_{k+1} - \hat{x}_{k'})$$

$$= [\hat{x}_k + u(t_{k+1} - t_k)] + K_{k+1} [z_{k+1} - \hat{x}_k - u(t_{k+1} - t_k)]$$

$$K_{k+1} = \frac{\sigma_{k'}^2}{\sigma_{k'}^2 + \sigma_z^2} = \frac{\sigma_k^2 + \sigma_w^2 [t_{k+1} - t_k]}{\sigma_k^2 + \sigma_w^2 [t_{k+1} - t_k] + \sigma_z^2}$$

Generalised form of this is the Kalman filter…

Seigwart & Nourbakhsh, 2004
References
Shigang Yue · Roger D. Santer · Yoshifumi Yamawaki · F. Claire Rind. Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated. *Autonomous Robots* 2009.