
Maps and Planning

IAR Lecture 7

Barbara Webb

From local strategies to routes to maps

• (From lecture 4) Beacon or

memory of home view allows

navigation from a surrounding

catchment area

• Multiple beacons or memories

can be linked together to form

routes

This image cannot currently be displayed.

• If we can combine routes (or close loops in routes)
by recognising overlapping locations we create a
graph representation of the world

• Problem is to reliably recognise when encounter the
same location:

– From different approach directions

– With possible alterations to appearance (e.g. lighting)

– In ‘wrong place’ according to odometry

• But not to confuse locations that are different but
look similar

• And ideally, to do this with an efficient algorithm.

From local strategies to routes to maps

Topological maps

• Represent known locations and the connections
between them as nodes and edges in a graph

• The edges could represent simple adjacency, the raw
actions needed to get from one node to the next; or
direction, distance, path convenience etc.

• Can determine a possible (or even the optimal) route
by standard graph search methods

Example: RAT-SLAM

• For each new local view and/or

pose, store an ‘experience’ node,

linked to the previous node by a

transition derived from the self

motion (experience nodes are like

rat place cells)

• Recognise when same view and

pose occur to close loops in the

experience map

• When closing loops, align the

transitions and poses for geometric

consistency to correct for drift

RAT-SLAM • Both local views and self-motion are

derived from vision

• Use different parts of visual field for:

A: Local view: compare to previously

stored templates; either recognise or store

as new template

B: Rotation estimate: find sideways pixel

shift that produces best match.

C: Speed estimate: for best rotation, take

image difference.

• In each case reduce image to one-

dimensional scanline of normalised

intensity across columns.

RatSLAM Results 2008

•Using built-in laptop

webcam, drove for 100

minutes through 3km by

1.6km area of Brisbane

• Visualising the

‘experience map’ shows

method produces a fairly

accurate map that could be

used for navigation

Sequence SLAM (Milford 2013)

Improve matching by looking for sequences

From topological to metric maps

• A graph in which edges represent the distances and directions
between locations in consistent global co-ordinates is
effectively a metric map.

• We describe the location of the robot and objects in its world
in some kind of absolute coordinates (e.g. cartesian or polar)

• For simple robot, moving on ground plane and able to rotate
on the spot, could consider this as 2 degree of freedom
configuration space (i.e., where the robot can move to):

– Only obstacle location matters (not identity)

– Assume robot is holonomic or can rotate on spot

– Treat robot as a single point and expand obstacle
boundaries by robot’s maximum dimension

Example: Occupancy grid representation

• Divide space into a regular rectangular grid at some

specific resolution

• Mark each grid square as either ‘occupied’, ‘empty’ or

‘unknown’

Topological

Metric

Raw sensor

data

Extract

features

Use sensor

model

Convert to

spatial data

Store few

locations

Store

continuous

links

Make

inferences

between nodes

Continuous

representation

Connect by

raw motor

action

Connect with

some metric

information

Nodes have

global

position

Absolute

metric

From metric to topological maps

• For planning a route, one popular approach is

to convert a metric map to a topological map

• Several different methods:

– Visibility graph

– Voronoi diagram

– Cell decomposition

– Or treat each empty grid square as a node

• Can then apply standard graph search e.g. A*

From metric to topological maps

Visibility graph: edges join all vertices that can ‘see’

each other. Defines shortest possible paths.

From metric to topological maps

• Voronoi graph – generate edges that are

equidistant from obstacles, meeting at vertices.

From metric to topological maps

• Cell decomposition: define free and occupied

geometric areas and determine which are adjacent

Path planning

• For a graph with nodes connected by edges

• f(n) is the “goodness” of the path via node n

• g(n) is the “cost” of going from the Start to node
n

• h(n) is the cost of going from n to the Goal

• ε is relative weighting of these costs

• Use c(n,n’): cost from node n to adjacent node n’

f(n)=g(n)+εh(n)

Breadth-first search

If ε=0, and c(n,n’) is constant for all n (e.g. in grid) then

breadth first search will find optimal route.

A* Heuristic Function

• g*(n) is easy: just sum up the path costs to n

• h*(n) is tricky

– But if began with metric map, may know the direct

distance between any two nodes, even if not what path is

needed to get between them.

– Thus a minimal estimate of the remaining cost we can use

for h*(n) is the direct distance between n and Goal

f*(n)=g*(n)+h*(n)

If ε=1, and c(n,n’) is not constant, A* is a more efficient search.

Like breadth-first except always expand the ‘best’ (least cost)

node first (note same method with ε=0 is Dijkstra’s algorithm)

Example: A to E

• But since you’re starting at A and can only look 1 node ahead,

this is what you see:

AB

D

F E

1

1

1

1

1.4

1.4

AB

D

E

1

1.4

• Two choices for n: B, D

• Do both

– f*(B)=1+2.24=3.24

– f*(D)=1.4+1.4=2.8

• Expand the most plausible path first => A-D-?-E

AB

D

E

1

1.4

1.4

2.24

• A-D-?-E

– “stand on D”

– Can see 2 new nodes: F, E

– f*(F)=(1.4+1)+1=3.4

– f*(E)=(1.4+1.4)+0=2.8

• Three paths

– A-B-?-E >= 3.24

– A-D-E = 2.8

– A-D-F-?-E >=3.4

• A-D-E is the winner!

– Don’t have to look farther because expanded the
shortest first, others couldn’t possibly do better
without having negative distances, violations of laws
of geometry…

AB

D

E

1

1.4

1.4

F

1

1

Planning as optimisation

• The problem of planning can be formulated as an

optimisation problem:

– Robot has goals, but actions have costs

– Express both as a single ‘pay-off’ function, e.g.,

Aim is to maximise the cumulative expected pay-off:

−

+
=

1

100
),(uxr

Where 0<γ<1 is a discount factor,

making distant reward less attractive.

= ∑

=
+

T

tT rER
1τ

τ
τγ

If reach the desired state

Otherwise, i.e., cost for each time step

Optimal Policy
• 1-step optimal policy:

• Value function of 1-step optimal policy:

• T-step optimal policy is defined recursively:

• In theory this can sometimes be solved; in practice usually obtain
the value function by iteration till the approximation converges

),(argmax)(1 uxrx
u

=π

),(max)(1 uxrxV
u

γ=

[]∑= −+=
N

i iiT
u

T xuxpxVuxrx
1 1),|()(),(argmax)(π

State transition

probabilities

N is number of

possible states

Value of the

next state

Summary
• Local navigation strategies suffice for some robot
tasks

• Local strategies can be linked to form routes

• Routes can be linked to form maps:

– A map is needed to plan novel routes (exception?)

• Choice of map representation has many
consequences:

– How can it be acquired?

– How much information must be stored?

– How can it be used to find novel routes?

References:

M. J. Milford, G. Wyeth (2008) ”Mapping a Suburb With a
Single Camera Using a Biologically Inspired SLAM System,“
IEEE Transactions on Robotics, 24: 1038-1052

M. J. Milford (2013) Vision-based place recognition: how low

can you go? The International Journal of Robotics Research 32

(7), 766-789

Chapter 6 of Seigwart, R. and Nourbakhsh, I.R. `Introduction to
Autonomous Mobile Robots', 2nd edition, MIT Press 2011

