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From local strategies to routes to maps

• (From lecture 4) Beacon or 

memory of home view allows 

navigation from a surrounding 

catchment area

• Multiple beacons or memories 

can be linked together to form 

routes
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• If we can combine routes (or close loops in routes)  
by recognising overlapping locations we create a 
graph representation of the world 

• Problem is to reliably recognise when encounter the 
same location:

– From different approach directions

– With possible alterations to appearance (e.g. lighting)

– In ‘wrong place’ according to odometry

• But not to confuse locations that are different but 
look similar

• And ideally, to do this with an efficient algorithm.

From local strategies to routes to maps



Topological maps

• Represent known locations and the connections 
between them as nodes and edges in a graph

• The edges could represent simple adjacency, the raw 
actions needed to get from one node to the next; or 
direction, distance, path convenience etc.

• Can determine a possible (or even the optimal) route 
by standard graph search methods



Example: RAT-SLAM

• For each new local view and/or 

pose, store an ‘experience’ node, 

linked to the previous node by a 

transition derived from the self 

motion (experience nodes are like 

rat place cells)

• Recognise when same view and 

pose occur to close loops in the 

experience map

• When closing loops, align the 

transitions and poses for geometric 

consistency to correct for drift



RAT-SLAM • Both local views and self-motion are 

derived from vision

• Use different parts of visual field for:

A: Local view: compare to previously 

stored templates; either recognise or store 

as new template

B: Rotation estimate: find sideways pixel 

shift that produces best match.

C: Speed estimate: for best rotation, take 

image difference.

• In each case reduce image to one-

dimensional scanline of normalised 

intensity across columns.



RatSLAM Results 2008

•Using built-in laptop 

webcam, drove for 100 

minutes through 3km by 

1.6km area of Brisbane

• Visualising the 

‘experience map’ shows 

method produces a fairly 

accurate map that could be 

used for navigation



Sequence SLAM (Milford 2013)

Improve matching by looking for sequences 



From topological to metric maps

• A graph in which edges represent the distances and directions 
between locations in consistent global co-ordinates is 
effectively a metric map.

• We describe the location of the robot and objects in its world 
in some kind of absolute coordinates (e.g. cartesian or polar)

• For simple robot, moving on ground plane and able to rotate 
on the spot, could consider this as 2 degree of freedom 
configuration space (i.e., where the robot can move to):

– Only obstacle location matters (not identity)

– Assume robot is holonomic or can rotate on spot

– Treat robot as a single point and expand obstacle 
boundaries by robot’s maximum dimension



Example: Occupancy grid representation

• Divide space into a regular rectangular grid at some 

specific resolution

• Mark each grid square as either ‘occupied’, ‘empty’ or 

‘unknown’
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From metric to topological maps

• For planning a route, one popular approach is 

to convert a metric map to a topological map

• Several different methods:

– Visibility graph

– Voronoi diagram

– Cell decomposition

– Or treat each empty grid square as a node

• Can then apply standard graph search e.g. A*



From metric to topological maps

Visibility graph: edges join all vertices that can ‘see’ 

each other. Defines shortest possible paths.



From metric to topological maps

• Voronoi graph – generate edges that are 

equidistant from obstacles, meeting at vertices.



From metric to topological maps

• Cell decomposition: define free and occupied 

geometric areas and determine which are adjacent



Path planning

• For a graph with nodes connected by edges

• f(n) is the “goodness” of the path via node n

• g(n) is the “cost” of going from the Start to node 
n

• h(n) is the cost of going from n to the Goal

• ε is relative weighting of these costs

• Use c(n,n’): cost from node n to adjacent node n’

f(n)=g(n)+εh(n)



Breadth-first search

If ε=0, and c(n,n’) is constant for all n (e.g. in grid) then 

breadth first search will find optimal route.



A* Heuristic Function

• g*(n) is easy: just sum up the path costs to n

• h*(n) is tricky

– But if began with metric map, may know the direct

distance between any two nodes, even if not what path is 

needed to get between them.

– Thus a minimal estimate of the remaining cost we can use 

for h*(n) is the direct distance between n and Goal

f*(n)=g*(n)+h*(n)

If ε=1, and c(n,n’) is not constant, A* is a more efficient search. 

Like breadth-first except always expand the ‘best’ (least cost) 

node first (note same method with ε=0 is Dijkstra’s algorithm)



Example: A to E

• But since you’re starting at A and can only look 1 node ahead, 

this is what you see:
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• Two choices for n: B, D

• Do both

– f*(B)=1+2.24=3.24

– f*(D)=1.4+1.4=2.8

• Expand the most plausible path first => A-D-?-E
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• A-D-?-E

– “stand on D”

– Can see 2 new nodes: F, E

– f*(F)=(1.4+1)+1=3.4

– f*(E)=(1.4+1.4)+0=2.8

• Three paths

– A-B-?-E >= 3.24

– A-D-E = 2.8

– A-D-F-?-E >=3.4

• A-D-E is the winner! 

– Don’t have to look farther because expanded the 
shortest first, others couldn’t possibly do better 
without having negative distances, violations of laws 
of geometry…

AB

D

E

1

1.4

1.4

F

1

1



Planning as optimisation

• The problem of planning can be formulated as an 

optimisation problem:

– Robot has goals, but actions have costs

– Express both as a single ‘pay-off’ function, e.g., 

Aim is to maximise the cumulative expected pay-off:
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Optimal Policy
• 1-step optimal policy:

• Value function of 1-step optimal policy:

• T-step optimal policy is defined recursively:

• In theory this can sometimes be solved; in practice usually obtain 
the value function by iteration till the approximation converges
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Summary
• Local navigation strategies suffice for some robot 
tasks

• Local strategies can be linked to form routes

• Routes can be linked to form maps:

– A map is needed to plan novel routes (exception?)

• Choice of map representation has many 
consequences:

– How can it be acquired?

– How much information must be stored?

– How can it be used to find novel routes?
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