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The DARPA challenges 

• Grand Challenge: autonomous vehicles navigating desert 
trails and roads at ‘high’ speeds: 

– First event, 2004: all vehicles failed in first 10km of route 

– Second event, 2005: five vehicles completed 244km, 3 within 7hrs. 

• Urban Challenge: autonomous vehicles driving through 
urban environment, obeying road laws and interacting 
safely with other vehicles: 

– Announced April 2006, 89 teams register, 53 first demos, 36 in 
qualification event, 11 in final event, 6 succeeded, 3 without 
human intervention in 3 missions over 97km in under 6 hours. 

– We will look at the first and second placing robots: ‘Boss’ & 
‘Junior’ 



Boss: Team led by CMU 



Boss (CMU) 

 



Junior: Team led by Stanford 

 



Exploiting physics? 

• Using highly developed car technology as base system 

• Some modifications, e.g.: 
– Boss: reduced compliance in steering, better brakes. 

– Junior: “limited-torque steering… electronic brake booster” 

• Also note critical sensor technology:  
– Applanix fuses GPS and inertial and wheel encoder data for 

100cm/0.1deg accuracy position estimate. 

– LIDAR uses reflected laser pulses to detect range information. 

• Boss team mention criticality of endurance tests that 
picked up “intermittent and subtle software and mechanical 
defects” such as small gash in signal line causing a short 
circuit 



Sensing for action? 
• Both teams use multiple sensors, some fused, some 

redundant, some with specialised functions. 

• Junior:  

– 2-D laser detects large, close obstacles  

– 3-D laser, use relative change in distance between rings 

to detect small obstacles such as kerbs  

 



Exploiting dynamics? 
• Boss motion controller: model-predictive control to 

generate dynamically feasible actions from start state to 
goal state. 

• Control input from two parameterised functions: linear 
velocity and curvature 

• Velocity function selected from four profiles: 

 

 

 

 

• Generate set of trajectories to goals at lateral offsets from 
centre-line, for each have sharp or smooth trajectory 

 

 
• Choose best trajectory 

dependent on obstacle 

sensing and other metrics  



Combining behaviours? 

Boss: 



Combining behaviours? 
“Junior’s software architecture is designed as a data-driven 

pipeline in which individual modules process information 

asynchronously.” 

Finite state machine control of  

behaviour transitions 



Maps? 
• Competition entrants were given a detailed map in the form of a Road 

Network Definition File (RNDF) and high resolution aerial image 

• Junior team used latter to refine former, e.g. adding way-points and 

smoothing trajectories 



Localisation? 

 



Filtering? 

• Position filter for Boss: reject unreasonable 

position updates based on simple motion 

model for distance and heading:  

 

 

 



• Particle filter for Junior: 
dynamic object tracking 

• Uses virtual sensor (a)– 
“synthetic 2-D scan” 
combines nearest objects 
from all laser data 

• Any change (b) is a 
hypothesised to be a 
moving object; represent 
as set of particles with 
variable location, yaw, 
velocity and dimension 

• Using prediction and 
update get particles 
locked onto real moving 
vehicles (c) 



Planning? 
• Junior: 

– Uses Hybrid A* 

 

– Standard grid-to-graph uses 
centre of cells as node 
locations, but vehicle cannot 
drive this path 

 

–  Instead ‘continuous’ cell co-
ordinates calculated from 
predicted effect of control 
actions – trajectory that enters 
new cell determines associated 
node location 

 



Planning? 
• Boss:  

– Computes cost of all possible routes to next mission 
checkpoint based on connectivity graph: includes 
knowledge of road blockages, speed limits and time for 
different manouvres (e.g. left vs. right turn in traffic) 

– In unstructured environment (parking lot) uses anytime 
D* backward planning over state space of position, 
orientation and speed; variable resolution. 

• “Anytime D* backward”?!? 
– Recall A* uses f(n)=g(n)+ εh(n), ε=1 

– ‘Anytime’ uses ε >1, which will run faster but give sub-
optimal solution, reduce ε and replan if time allows 

– ‘D’ is dynamic, if map changes (e.g. detect new 
obstacle) recompute, but only for paths affected 

– ‘backward’ starts graph expansion from vehicle instead 
of goal, as observable changes are usually local 

 



Hybrid architectures? 

• Boss has three-layer architecture: 

– Mission planning: determines route to take to 

achieve high level goals 

– Behavioural: when to change lanes, give 

precedence at intersections, error recovery 

– Motion planning: determine trajectory that will 

avoid obstacles while progressing to local goals 

 



Junior – asynchronous modular pipeline architecture 

 



Remaining limitations? 

• Sensor technology still not adequate for fully autonomous 
vehicles in real environments: 

– Dust raised by vehicle was then perceived as an obstacle 

– Media van jammed GPS signals 

• Very limited representation of world, particularly other 
moving objects: 

– Boss: Mismatches between world model and reality led to assumed 
road blocks (another car in intersection) and long detours 

– Junior: treated car waiting at intersection as parked  

• No suitable validation/verification for safety 

• In real traffic, may need to be able to read social cues  



The future? 

• Autonomous cars coming 

close to commercial reality 

• But most recent (2015) 

DARPA challenge, for 

humanoid robots in a rescue 

scenario, did not produce 

successful results: 

– Winner took 44 minutes to do 8 

not very intelligent tasks 

– Most robots were far from 

autonomous 

 



Thanks for listening and… 

Please fill in an online course feedback form! 
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