
Case Study (and revision):

the DARPA Urban challenge

IAR Lecture 15

Barbara Webb

The DARPA challenges

• Grand Challenge: autonomous vehicles navigating desert
trails and roads at ‘high’ speeds:

– First event, 2004: all vehicles failed in first 10km of route

– Second event, 2005: five vehicles completed 244km, 3 within 7hrs.

• Urban Challenge: autonomous vehicles driving through
urban environment, obeying road laws and interacting
safely with other vehicles:

– Announced April 2006, 89 teams register, 53 first demos, 36 in
qualification event, 11 in final event, 6 succeeded, 3 without
human intervention in 3 missions over 97km in under 6 hours.

– We will look at the first and second placing robots: ‘Boss’ &
‘Junior’

Boss: Team led by CMU

Boss (CMU)

Junior: Team led by Stanford

Exploiting physics?

• Using highly developed car technology as base system

• Some modifications, e.g.:
– Boss: reduced compliance in steering, better brakes.

– Junior: “limited-torque steering… electronic brake booster”

• Also note critical sensor technology:
– Applanix fuses GPS and inertial and wheel encoder data for

100cm/0.1deg accuracy position estimate.

– LIDAR uses reflected laser pulses to detect range information.

• Boss team mention criticality of endurance tests that
picked up “intermittent and subtle software and mechanical
defects” such as small gash in signal line causing a short
circuit

Sensing for action?
• Both teams use multiple sensors, some fused, some

redundant, some with specialised functions.

• Junior:

– 2-D laser detects large, close obstacles

– 3-D laser, use relative change in distance between rings

to detect small obstacles such as kerbs

Exploiting dynamics?
• Boss motion controller: model-predictive control to

generate dynamically feasible actions from start state to
goal state.

• Control input from two parameterised functions: linear
velocity and curvature

• Velocity function selected from four profiles:

• Generate set of trajectories to goals at lateral offsets from
centre-line, for each have sharp or smooth trajectory

• Choose best trajectory

dependent on obstacle

sensing and other metrics

Combining behaviours?

Boss:

Combining behaviours?
“Junior’s software architecture is designed as a data-driven

pipeline in which individual modules process information

asynchronously.”

Finite state machine control of

behaviour transitions

Maps?
• Competition entrants were given a detailed map in the form of a Road

Network Definition File (RNDF) and high resolution aerial image

• Junior team used latter to refine former, e.g. adding way-points and

smoothing trajectories

Localisation?

Filtering?

• Position filter for Boss: reject unreasonable

position updates based on simple motion

model for distance and heading:

• Particle filter for Junior:
dynamic object tracking

• Uses virtual sensor (a)–
“synthetic 2-D scan”
combines nearest objects
from all laser data

• Any change (b) is a
hypothesised to be a
moving object; represent
as set of particles with
variable location, yaw,
velocity and dimension

• Using prediction and
update get particles
locked onto real moving
vehicles (c)

Planning?
• Junior:

– Uses Hybrid A*

– Standard grid-to-graph uses
centre of cells as node
locations, but vehicle cannot
drive this path

– Instead ‘continuous’ cell co-
ordinates calculated from
predicted effect of control
actions – trajectory that enters
new cell determines associated
node location

Planning?
• Boss:

– Computes cost of all possible routes to next mission
checkpoint based on connectivity graph: includes
knowledge of road blockages, speed limits and time for
different manouvres (e.g. left vs. right turn in traffic)

– In unstructured environment (parking lot) uses anytime
D* backward planning over state space of position,
orientation and speed; variable resolution.

• “Anytime D* backward”?!?
– Recall A* uses f(n)=g(n)+ εh(n), ε=1

– ‘Anytime’ uses ε >1, which will run faster but give sub-
optimal solution, reduce ε and replan if time allows

– ‘D’ is dynamic, if map changes (e.g. detect new
obstacle) recompute, but only for paths affected

– ‘backward’ starts graph expansion from vehicle instead
of goal, as observable changes are usually local

Hybrid architectures?

• Boss has three-layer architecture:

– Mission planning: determines route to take to

achieve high level goals

– Behavioural: when to change lanes, give

precedence at intersections, error recovery

– Motion planning: determine trajectory that will

avoid obstacles while progressing to local goals

Junior – asynchronous modular pipeline architecture

Remaining limitations?

• Sensor technology still not adequate for fully autonomous
vehicles in real environments:

– Dust raised by vehicle was then perceived as an obstacle

– Media van jammed GPS signals

• Very limited representation of world, particularly other
moving objects:

– Boss: Mismatches between world model and reality led to assumed
road blocks (another car in intersection) and long detours

– Junior: treated car waiting at intersection as parked

• No suitable validation/verification for safety

• In real traffic, may need to be able to read social cues

The future?

• Autonomous cars coming

close to commercial reality

• But most recent (2015)

DARPA challenge, for

humanoid robots in a rescue

scenario, did not produce

successful results:

– Winner took 44 minutes to do 8

not very intelligent tasks

– Most robots were far from

autonomous

Thanks for listening and…

Please fill in an online course feedback form!

References:

http://www.darpa.mil/grandchallenge/index.asp

Urmson et al. (2008) “Autonomous Driving in Urban

Environments: Boss and the Urban Challenge” Journal of Field

Robotics 25(8): 425-466

Montemerlo et al. (2008) “Junior: The Stanford Entry in the

Urban Challenge” Journal of Field Robotics 25(9): 569-597

