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Basic process 

Population of genomes, e.g. 

binary strings, tree structures 
Decode each into robot 

controller and/or 

morphology, e.g. weights 

in neural net, position of 

sensors 

Place in environment and run  

Evaluate behaviour 

using a fitness function 

e.g. achieve task, speed, 

time survived, find mate 

Use fitness to select for 

reproduction, e.g. only if 

achieved task, or best 

individuals, or proportional 

to fitness score 

Produce new set of 

genomes, e.g. breed, 

crossover, mutate 



Motivation 

• Lack of design methods that will ensure the 
right dynamics emerge from the 
environment-robot-task interaction 

• Automate the trial-and-error approach  

• Avoid preconceptions in design 

• Allow self-organising processes to discover 
novel and efficient solutions 

• Good enough for biology (and might help 
us understand biology) 



‘Typical’ example 

Floreano & Mondada (1996): evolving Braitenberg-type 

control for a Khepera robot to move around maze 

 



• Eight IR sensor input units, feed-forward to two 

motor output units with recurrent connections 

• Standard sigmoidal ANN  

 

• Genome – bit string encoding weight values 

• Fitness function:  

where i is highest IR value,  

 

• Population of 80, each tested for approx 30s 

• Copied proportional to fitness, then random paired 

single point crossover and mutation (prob.=0.2) 

• 100 generations, get smooth travel round maze 
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Similar approach has been used to evolve 

controllers for more complex robots 

AIBO (Hornby et al 2000) 

 

Blimp (Zufferey et al, 2002)  



Issues for the basic process 

• How to represent the robot controller 

• How to determine to fitness 

• How large a population 

• How strongly to select 

• How to introduce variation, and how much 

• How to decide when to stop (fitness 

threshold, convergence, plateau, time…)  



Extensions to the basic process 

• Incremental evolution 

• Co-evolution 

• More powerful or flexible genetic encoding 

schemes 

• Better use of simulation to speed process 

without compromising transfer to real world 

• Evolving morphology 



Incremental Evolution 

• For complex tasks, early generations may have 
zero fitness – and slope is too steep to hill-climb 

• Two approaches: 

– Start with simpler fitness function, and increase 
difficulty in several stages 

• N.B. this could include evolving different parts of 
the controller separately, then combining 

– Start with simpler environment, and gradually increase 
complexity  

• N.B. this could include starting in simulation and 
later transferring to robot 



Example: Lewis (1992) evolving six-legged walking  

 

T1 

T2 

W1 W2 

Leg 

swing 

Leg 

elevation 

Stage one: evolving two weights 

(W1,W2) and two thresholds (T1,T2) 

for co-ordinated single leg motion. 

 

1a: neuron states are non-zero 

1b: neurons in opposite states 

1c: at least one neuron changes state 

1d: damped oscillations 

1e: non-damping oscillations 

1f: increased oscillation magnitude 

1g: oscillation over entire range 
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Stage two: evolve four weights 

(A,B,C,D) for inter-leg co-ordination. 

 

Fitness = aO + bL –cT 

Where O is oscillation 

 L is length of travel 

 T is degrees turned 

• Using small population (10), evolved oscillation in 10-17 

generations, and walking in another 10-35. 

• Sometimes population split between tripod and wave gaits, 

but tripod would eventually ‘win’ 

• Evolved to walk backwards due to robot mechanics 



Co-evolution 

• Have two or more 
‘species’ competing in one 
environment 

– E.g. Floreano et al (1998) 
‘predator vs. prey’ 

• Each species thus has to 
evolve in a changing  
environment 

• Potential for unsupervised 
incremental evolution 

• However can also result in 
cycling 



Evolution in 

collective robots 

• Mitria et al 2009 

• Fitness: positive for staying at food, negative for being 

near poison, can only recognise in near vicinity. 

• Robots evaluated in groups of 10, 100 groups per 

generation. 

• ‘Inadvertent’ signal of food location by robot’s own light 

leads to evolution of light approach in others, potential 

overcrowding. If then allow evolution of signalling some 

robots evolve to ‘lie’ by turning off their light on food; but 

this reduces evolutionary pressure to approach light. 

• Result is complex balance with mixed strategies. 



Alternative encodings 

• Use modular networks 

– Reduces risk of disruptive crossover 

• Allow changes in genome length 

– Often useful to enforce network symmetry or to 

allow sections to repeat 

– Can have genome specify growth process 

(developmental robotics) 

• Evolve structured programs rather than 

networks (e.g. trees, graphs, L-systems) 



Better use of simulation 

• Evaluating every member of the population on a 
real robot severely limits population sizes, 
generations, and evaluation time - and requires 
robust rechargeable robots. 

• Robot controllers developed in simulation often 
fail when tested in the real world.  

• Effective transfer seems to require realistic, hard-
to-build, and probably slow simulations. 

• Jakobi (1997) proposed “radical envelope of 
noise” hypothesis to get around these constraints 



“Simulations cannot accurately model everything” 

Controller 

Robot  body  

Environment  

Controller 

Interactions 

Implementation 

• Behaviour is determined by limited number of interactions – the 

‘base set’ which can be modelled simply (with some inaccuracy) 

• Ensure the evolved controller is ‘base set exclusive’ and ‘base 

set robust’ by randomly varying everything else during evolution  

“Simulations cannot accurately model anything” 



• E.g. Jakobi & Quinn (1998) 

• Task: 

 

 

 

• Using spatially determined 

encoding: genome specifies 

position of neurons and their 

connections in development 

space, with symmetry 

• Using staged evolution 

IR1 IR2 IR4 IR3 IR5 IR6 

LD1 LD2 LD3 LD4 LD5 LD6 

FLOOR 

M1 M2 



 

 

 

 

• Simulation uses simple look-up tables for: 

– Movement in response to motor commands 

– IR values for walls 

– Light sensor response to bright vs. normal light 

• Introduces substantial random variation e.g.  

– Wheel offsets of ±1cm/s 

– Corridor length 40-60cm, width 13-23cm 

• After 6000 generations, successful in completing 
task, and transferred successfully to real robot. 

 



‘Transferability’ approach (Koos et al. 2013): 

optimize for task fitness and transferability 

 



Evolving morphology 

• Usually in simulation, e.g. Sims (1994) 

• Directed graph representation of bodies and 

controllers 
Segments contain sensors, effectors 

and simple processor nodes, which 

can pass scalar values in network 



Using 3-D printing with mixed 

materials (Hiller & Lipson, 2012) 

• Shape description is a thresholded 

mixture of 3D gausssians, each 

representing a different material 

• Genome is set of points, each with 

density, falloff distance, and material 

index; one material can be actuated, 

changing its volume by 20%. 

• Fitness is distance moved in 10 

actuation cycles 
2D illustration of 

thresholded gaussians 



Using 3-D printing with mixed 

materials (Hiller & Lipson, 2012) 
• All solutions found are similar: ‘scoot’ by expanding 

forward, tipping weight onto static material (white),  

contracting rear, and tipping back  



Using 3-D printing with mixed 

materials (Cheney et al, 2014) 
• Evolve using richer 

structural description: 
composite pattern 
producing network 
(CPPN) 

• Different material types: 
actuation in opposite 
phase; passive soft or stiff 

• Evolve with additional 
constraints: minimize 
size, or internal volume, 
or minimize actuation 
(energy costs) 



Remaining Issues 

• Resulting robots are often very hard to analyse – 
not necessarily any gain in understanding of the 
problem or its solution. 

• Assumptions are not completely avoided, but 
instead built into the fitness function, the 
architecture, or the simulation variables. 

• Not yet a convincing demonstration of greater 
efficiency than designing by hand. 

• Still not clear that can evolve complex control in a 
reasonable time span. 

• May be best seen as one of many tools for meta-
heuristic optimisation.  
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