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Collective robotics 

Different approaches (Kernbach, 2013) 

• Co-operative: distributed sensing and actuation, but 

centralised control. 

• Networked: higher individual autonomy, but still high 

level of communication and common knowledge. 

• Swarm: no common knowledge, only local 

communication, or interaction via effects on the world. 

• Small world: minimalist capabilities of individual, 

collective computation. 



E.g. exploring with multiple robots 

• Provided robots can merge their maps, can explore faster 

with multiple robots. 

• Potential speed up is 2*k, as single robot would need to 

spend time traversing known space to get to new frontier. 

 

 

 

 

 

• But need to co-ordinate exploration. 



Active mapping for k robots 
– For each robot, obtain cost function of moving from 

current position to other possible grid positions.  

– Use binary representation of potential information gain: 

cell is 0 if explored, 1 if unexplored. 

– For each robot in turn, set goal as unexplored grid 

location that has minimum cost to reach, and mark that 

location as explored (so not available for next robot). 

• More sophisticated approach would allow robots to swap 

goals if this reduces the overall cost, e.g. using auction 

mechanism. 

• Generalised, this is the problem of task allocation. 



E.g. Behaviour based task allocation 

• ALLIANCE architecture (Parker,1998) 
– Robots have motivation systems determining action 

selection: 

• Impatience: will choose a task not being completed 

by other robots 

• Acquiescence: give up a task if failing to complete 

– Broadcast periodic messages to each other indicating 

what they are doing. 

– Sensory feedback to monitor progress on tasks. 





Emergent co-operation 

• Holland (1995) ‘Stigmergy’ 

• Robots: 

– Front scoop tends to collect pucks 

– Lever triggers switch if pushing  two or more, 
makes robot back up, leaving pucks behind 

– Also avoid walls and each other using IR. 

• Result is gradual aggregation of pucks in a 
single pile 



Emergent co-operation 

• Melhuish et al (2000) 

• Robots can carry puck, detect gradient and notice 

if cross a boundary line. 

• Simple rules: 

– If hit another object, drop puck 

– If cross boundary going up gradient, move short 

distance and drop puck 

– If cross boundary going down gradient, back-up short 

distance and drop puck 



Emergent group behaviour 

Flocking: (Reynolds 1987) 

Assumes all ‘boids’ are identical and 

follow the same local rules: 

1. Collision Avoidance: Separate 

from other boids.  

2. Centering: Stay close to other 

boids.  

3. Velocity matching: travel in 

same direction. 



Flocking in real robots is difficult: 

• various attempts, but needed to include virtual or explicit 

leader, or all robots sensing goal 

• also problem of how to make individual robot able to sense 

relative position and bearing of neighbours 

• Recent example addresses some of these limitations (Turgut et 

al., 2008)   

Emergent group behaviour 



Turgut et al. 2008 

• IR sensors used to detect other robots (when not active) 

and obstacles (when active) 

• Use virtual heading sensor: each robot has a compass and 

wirelessly broadcasts its direction to neighbouring robots. 

• Desired heading 
alignment is calculated 
as average of detected 
neighbours 

• Proximal control is 
calculated as a virtual 
force with respect to 
detected robots or 
obstacles 



• Is robust to noise, but find coherent swarm size depends on 
virtual heading sensor range: noise in system prevents long-
range order emerging from short-range interactions. 

• Large flocks possible with just a few long-range interactions 
or with some common homing information. 



Self organised construction 

Kilobots (Rubenstein et al.2014) 

 



Local communication to localise and navigate 

 



Kilobots (Rubenstein et al.2014) 

 



Kilobots (Rubenstein et al.2014) 

 



• Basic task allocation assumes all 

robots can do all tasks and just 

need to distribute them effectively, 

then work separately. 

• More complex scenarios: 

– Task might require complex 

continuous interaction between 

two or more robots. 

– Robots could be heterogeneous. 

– Robots could be interacting with 

other technologies, or humans 

(or animals). 
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Inverse flocking: modelling duck behaviour by simple 

flocking rules to produce sheepdog control algorithm 

(Vaughan et al 2000) 
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