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What 1s SLAM?

Start in an unknown location and
unknown environment and Measurement
incrementally build a map of the
environment while
simultaneously using this map to
compute vehicle location = L
Simultaneous Localisation And )
Mapping

Estimate the pose and the map of a mobile
robot at the same time
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So far, we have been discussing the localisation problem, 1.e., a
map m 1s known a priori. From a sequence of control actions U
and measurements Z we can infer the locations of the robot X.
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Complementary to localisation 1s the mapping problem: If we
knew the location X of the robot (e.g. precise GPS) then from
the measurements Z we could infer the map M.

» E.g. represent environment
s » by a grid and estimate the
LW (assumed independent)
o probability that each
7, e < location 1s occupied by an
L - obstacle.
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But can we solve the ‘chicken and egg’ problem?

If we only know the robot’s position at x,,, use the sequence of
actions U and measurements Z to infer both the map M and the
robot positions X.
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Bayesian SLAM




Bayesian SLAM

* Recursive filter for estimating robot positions and map

* Prediction (time update)
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N i
.

Estimate at previous time step, Bel(x,,,m)

* Correction (measurement update)
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Bayesian SLAM

Bayesian SLAM works because
the error between estimated and
true landmark location depends
mostly on the error in the
position estimate, which implies
error 1S correlated between
different landmarks.

This means knowledge of the
relative location of landmarks
can only improve as more
observations are made.

As a consequence, accuracy of

map and location estimates will
converge, bounded only by the

quality of the possible map.
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(Extended) Kalman Filter SLAM

« Basic idea is ‘simply’ to include the map as part of the
state to be estimated, then apply methods as before

* Map with N landmarks:(3+2N)-dimensional Gaussian
¥\ (& o, o |

y
0

Belx,m) =

 (Can handle hundreds of dimensions



Map

EKF-SLAM

Correlation matrix
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Map

EKF-SLAM

Correlation matrix
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EKF-SLAM




(a)

(c)

(b)

(d)

a)-c) Pose
uncertainty increases
as robot moves

Thus each successive
landmark location
estimate 1s also less
certain

But in (d) see first
landmark again

Uncertainty of all
landmark locations
decreases

Pose uncertainty also
decreases



EKF SLAM Application




EKF SLAM Application
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Particle Filter SLAM

SLAM: state space <X, y, 6, map>
for landmark maps =<1, [,, ..., [ >

for grid maps = <c;;, ¢;5 ..., €}y Copy wvny Cpp™>

Problem: The number of particles needed to represent
the estimate grows exponentially with the dimension of
the state space!



Solution: Factored Posterior (Landmarks)
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Mapping using Landmarks

Landmark 2 —



Factored Posterior

p(x1:4, l1m | 216, U0 t—1)
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Robot path posterior
(localization problem)
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Rao-Blackwellization
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This factorization is also called Rao-Blackwellization

Given that the second term can be computed efficiently, particle
filtering becomes possible.

Particles represent the distribution of possible robot trajectories
(the first term).



FastSLAM

Rao-Blackwellized particle filtering based on landmarks

Each landmark 1s represented by a Extended Kalman Filter (EKF)

Each particle therefore has to maintain M EKFs

Particle
#1

Particle
#2

Particle
N

X, Y, 0

X, Y, 0

X, Y, 0

Landmark 1 || Landmark 2 | .. Landmark M
Landmark 1 || Landmark 2 | .. Landmark M
Landmark 1 || Landmark 2 | .. Landmark M




FastSLAM — Action Update
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FastSLAM — Sensor Update
G‘ 0‘ Landmark #1
Filter
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FastSLAM — Sensor Update

Particle #1 Weight = 0.8
L)
Particle #2 @ ® Weight = 0.4
A

Particle #3 o) Weight = 0.1



