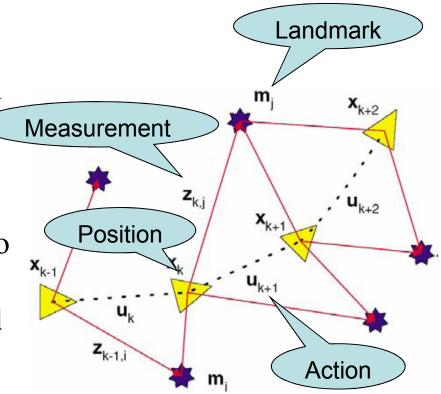
Simultaneous Localisation and Mapping

IAR Lecture 10 Barbara Webb

What is SLAM?

Start in an unknown location and unknown environment and incrementally build a **map** of the environment while **simultaneously** using this map to compute vehicle **location** = **Simultaneous Localisation And Mapping**

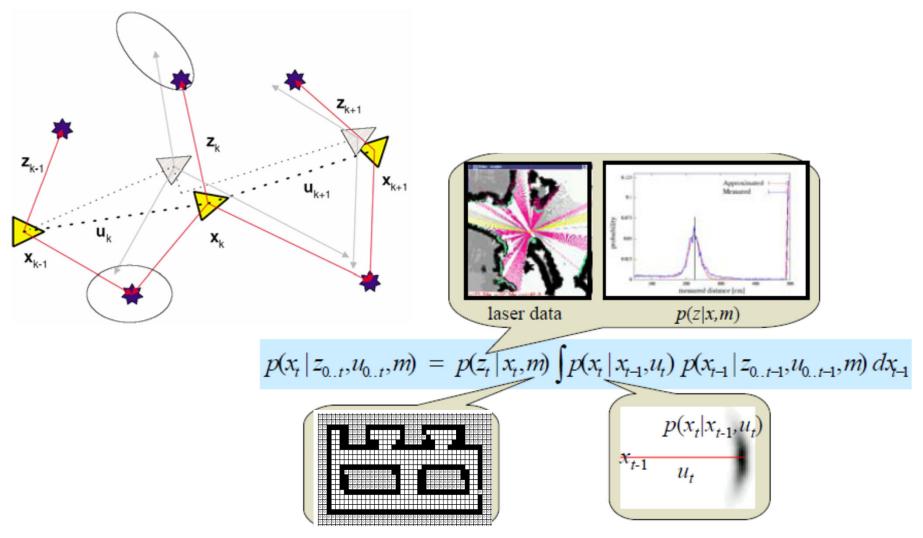


Estimate the pose and the map of a mobile robot at the same time

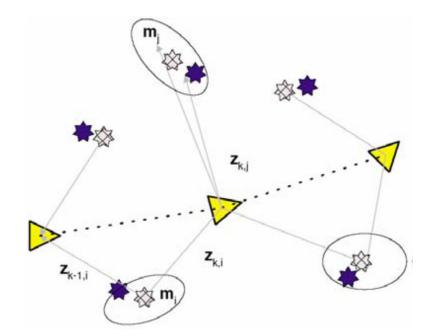
$$p(x, m \mid z, u)$$

 $\uparrow \uparrow \uparrow$
poses map measurements & actions

So far, we have been discussing the localisation problem, i.e., a map \mathbf{m} is known *a priori*. From a sequence of control actions \mathbf{U} and measurements \mathbf{Z} we can infer the locations of the robot \mathbf{X} .



Complementary to localisation is the mapping problem: If we knew the location X of the robot (e.g. precise GPS) then from the measurements Z we could infer the map M.

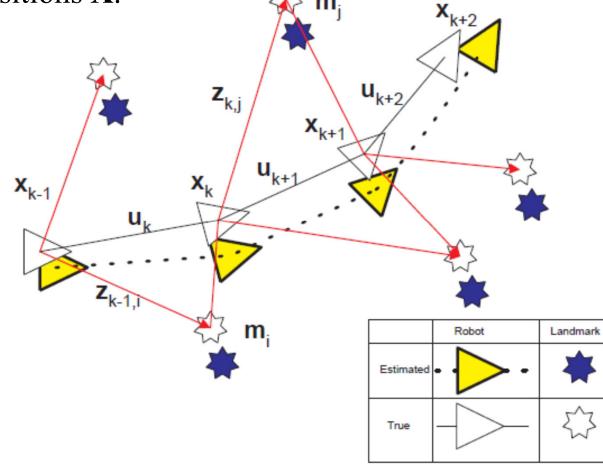


E.g. represent environment
by a grid and estimate the
(assumed independent)
probability that each
location is occupied by an
obstacle.

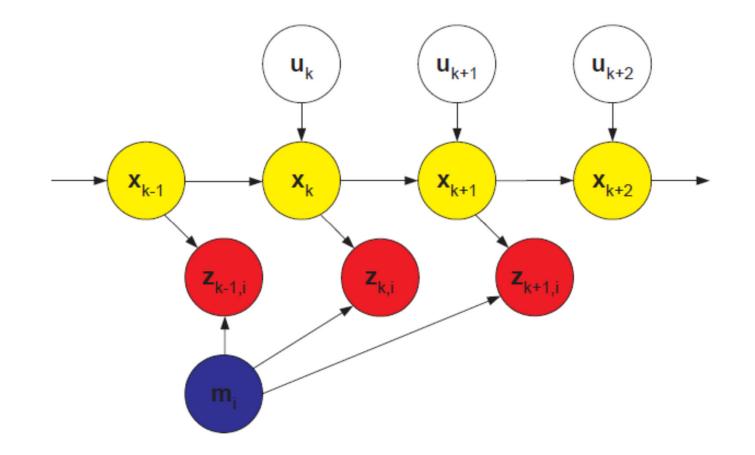
$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$
Inverse sensor model

But can we solve the 'chicken and egg' problem?

If we only know the robot's position at x_0 , use the sequence of actions U and measurements Z to infer both the map M and the robot positions X.



Bayesian SLAM



Bayesian SLAM

- Recursive filter for estimating robot positions and map
- Prediction (time update)

 $P(x_t, m \mid z_{0:t-1}, u_{0:t}, x_0) = \int P(x_t \mid u_t, x_{t-1})$ $Bel(x_t, m) \qquad \times P(x_{t-1}, m \mid z_{0:t-1}, u_{0:t-1}, x_0) \, dx_{t-1}$

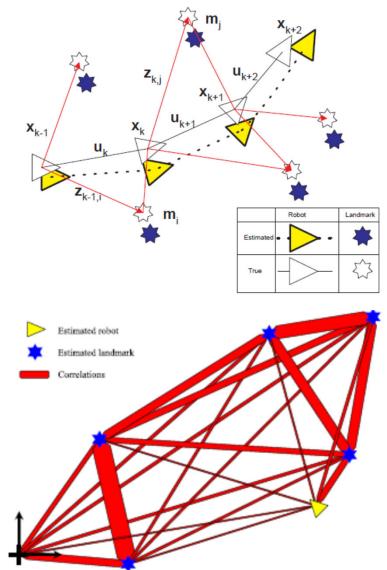
Estimate at previous time step, $Bel(x_{t-1},m)$

• Correction (measurement update)

 $P(x_t, m \mid z_{0:t}, u_{0:t}, x_0) = \eta P(z_t \mid x_t, m)$ $Bel(x_t, m) \times P(x_t, m \mid z_{0:t-1}, u_{0:t}, x_0)$ $\overline{Bel(x_t, m)}$

Bayesian SLAM

- Bayesian SLAM works because the error between estimated and true landmark location depends mostly on the error in the position estimate, which implies error is *correlated* between different landmarks.
- This means knowledge of the *relative* location of landmarks can only improve as more observations are made.
- As a consequence, accuracy of map and location estimates will converge, bounded only by the quality of the possible map.



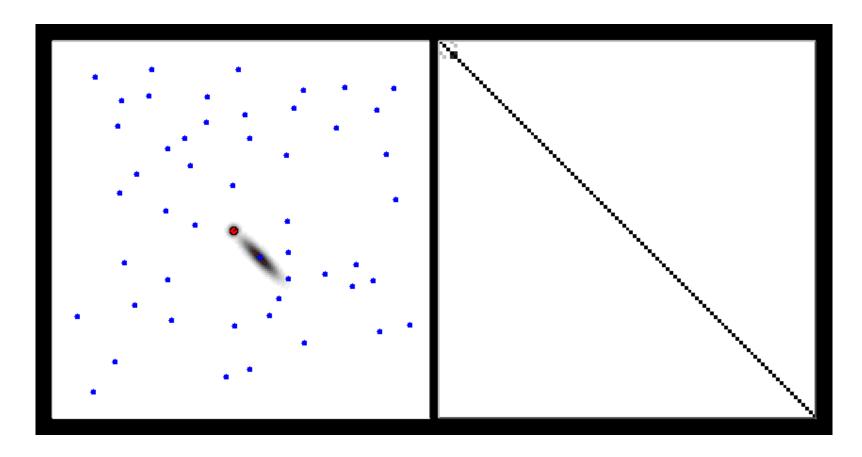
(Extended) Kalman Filter SLAM

- Basic idea is 'simply' to include the map as part of the state to be estimated, then apply methods as before
- Map with N landmarks:(3+2N)-dimensional Gaussian

$$Be(x_{i},m_{i}) = \begin{pmatrix} x \\ y \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} & \sigma_{xl_{i}} & \sigma_{xl_{2}} & \cdots & \sigma_{xl_{N}} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} & \sigma_{yl_{i}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{xl_{i}} & \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{\theta_{i}} & \sigma$$

• Can handle hundreds of dimensions

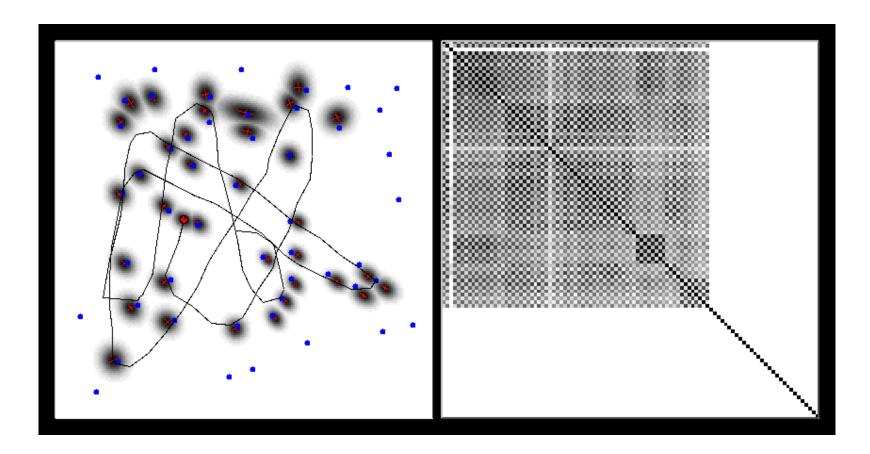
EKF-SLAM



Мар

Correlation matrix

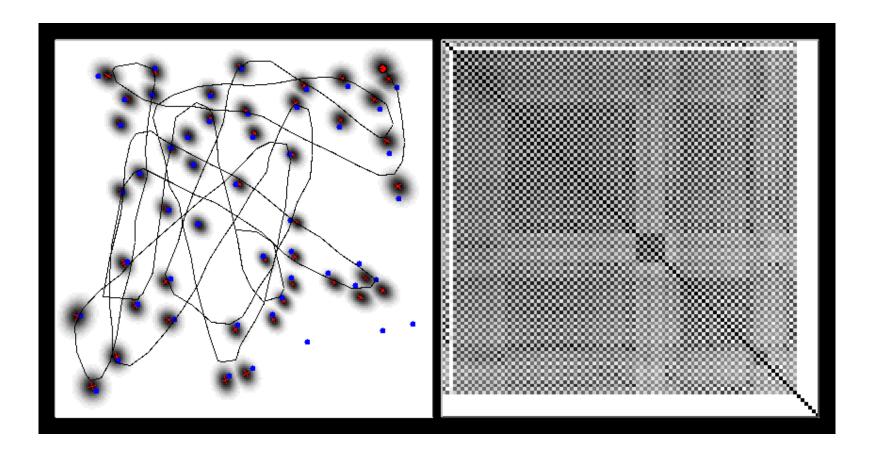
EKF-SLAM



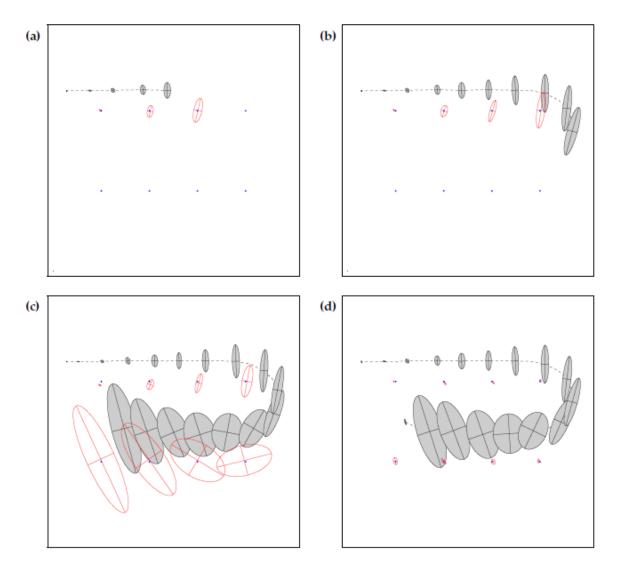
Мар

Correlation matrix

EKF-SLAM



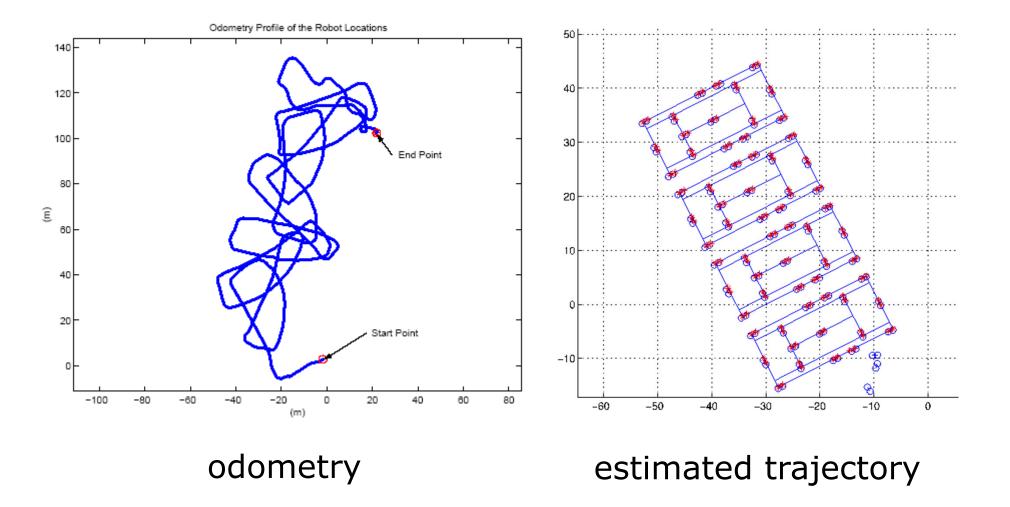
Correlation matrix



- a)-c) Pose uncertainty increases as robot moves
- Thus each successive landmark location estimate is also less certain
- But in (d) see first landmark again
- Uncertainty of all landmark locations decreases
- Pose uncertainty also decreases

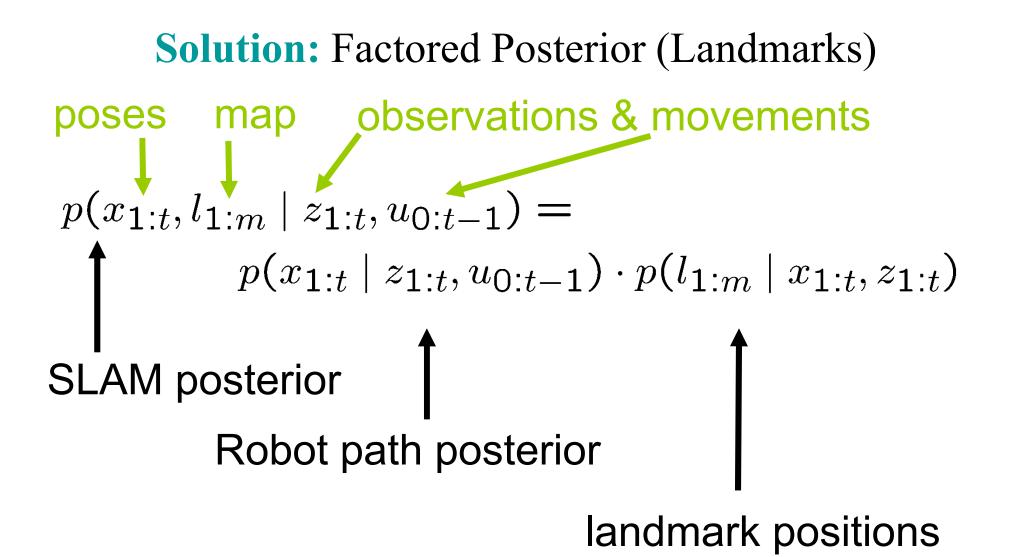
EKF SLAM Application

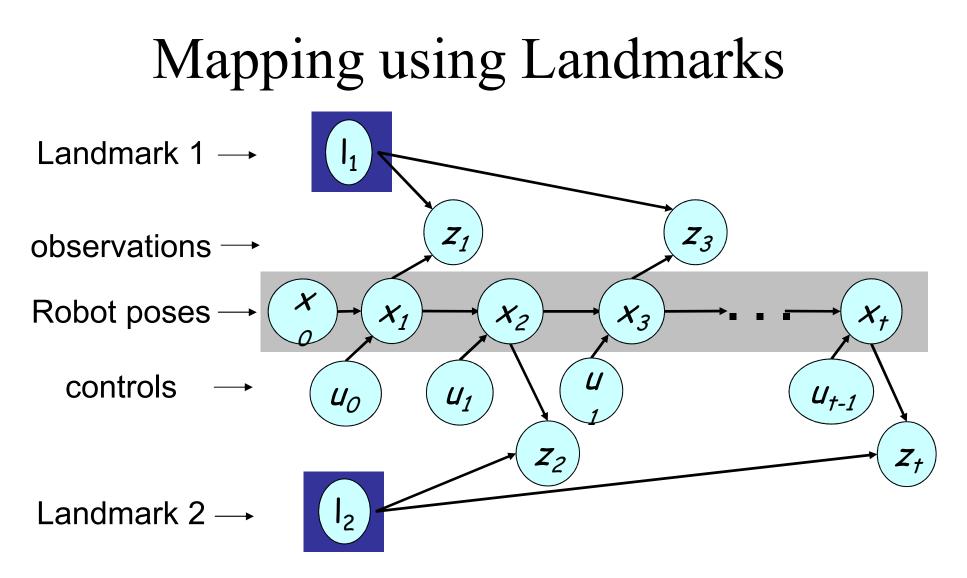
EKF SLAM Application



Particle Filter SLAM

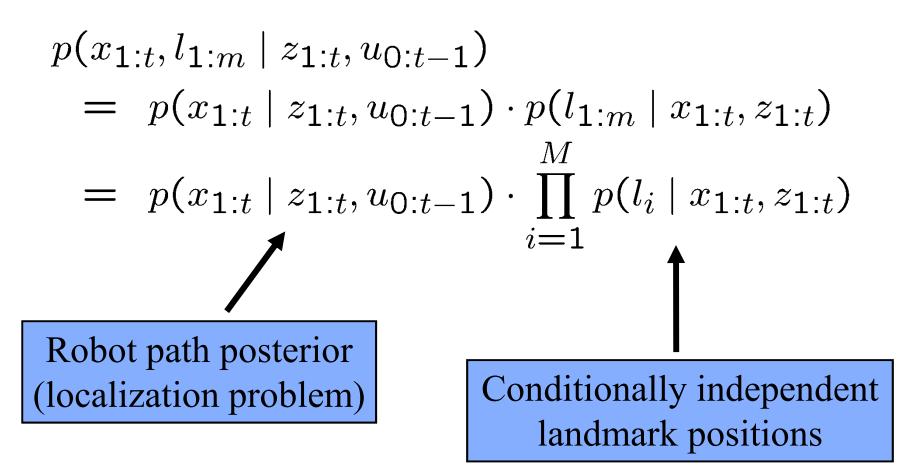
- SLAM: state space $\langle x, y, \theta, map \rangle$
 - for landmark maps = $\langle l_1, l_2, ..., l_m \rangle$
 - for grid maps = $< c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} >$
- Problem: The number of particles needed to represent the estimate grows exponentially with the dimension of the state space!





Knowledge of the robot's true path renders landmark positions conditionally independent

Factored Posterior



Rao-Blackwellization

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) = p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

- This factorization is also called Rao-Blackwellization
- Given that the second term can be computed efficiently, particle filtering becomes possible.
- Particles represent the distribution of possible robot trajectories (the first term).

FastSLAM

- Rao-Blackwellized particle filtering based on landmarks
- Each landmark is represented by a Extended Kalman Filter (EKF)
- Each particle therefore has to maintain *M* EKFs

FastSLAM – Action Update

