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What is SLAM?

Start in an unknown location and 

unknown environment and 

incrementally build a map of the 

environment while 

simultaneously using this map to 

compute vehicle location      = 

Simultaneous Localisation And 

Mapping

Position

Landmark

Action

Measurement

measurements & actions



So far, we have been discussing the localisation problem, i.e., a 

map m is known a priori. From a sequence of control actions U 

and measurements Z we can infer the locations of the robot X.



Complementary to localisation is the mapping problem: If we 

knew the location X of the robot (e.g. precise GPS) then from 

the measurements Z we could infer the map M.

• E.g. represent environment 
by a grid and estimate the 
(assumed independent) 
probability that each 
location is occupied by an 
obstacle.
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But can we solve the ‘chicken and egg’ problem?

If we only know the robot’s position at x0, use the sequence of 

actions U and measurements Z to infer both the map M and the 

robot positions X.



Bayesian SLAM



Bayesian SLAM

• Recursive filter for estimating robot positions and map

• Prediction (time update)

• Correction (measurement update)
Sensor model

Motion model
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Bayesian SLAM

• Bayesian SLAM works because 

the error between estimated and 

true landmark location depends 

mostly on the error in the 

position estimate, which implies 

error is correlated between 

different landmarks.

• This means knowledge of the 

relative location of landmarks 

can only improve as more 

observations are made.

• As a consequence, accuracy of 

map and location estimates will 

converge, bounded only by the 

quality of the possible map.
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• Basic idea is ‘simply’ to include the map as part of the 
state to be estimated, then apply methods as before

• Map with N landmarks:(3+2N)-dimensional Gaussian

• Can handle hundreds of dimensions

(Extended) Kalman Filter SLAM



10

EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix
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EKF-SLAM

Map              Correlation matrix



• a)-c) Pose 

uncertainty increases 

as robot moves 

• Thus each successive 

landmark location 

estimate is also less 

certain

• But in (d) see first 

landmark again

• Uncertainty of all 

landmark locations 

decreases

• Pose uncertainty also 

decreases



EKF SLAM Application



EKF SLAM Application

odometry estimated trajectory



� SLAM: state space < x, y, θ, map>

� for landmark maps = < l1, l2, …, lm>

� for grid maps = < c11, c12, …, c1n, c21, …, cnm>

� Problem: The number of particles needed to represent 

the estimate grows exponentially with the dimension of 

the state space!

Particle Filter SLAM



Solution: Factored Posterior (Landmarks)

SLAM posterior

Robot path posterior

landmark positions

poses map observations & movements



Knowledge of the robot’s true path renders landmark 

positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls
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Factored Posterior

Robot path posterior

(localization problem) Conditionally independent 

landmark positions



Rao-Blackwellization

� This factorization is also called Rao-Blackwellization

� Given that the second term can be computed efficiently, particle 

filtering becomes possible.

� Particles represent the distribution of possible robot trajectories 

(the first term).



FastSLAM
� Rao-Blackwellized particle filtering based on landmarks     

� Each landmark is represented by a Extended Kalman Filter (EKF)

� Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M
x, y, θ

Landmark 1 Landmark 2 Landmark M
x, y, θParticle

#1

Landmark 1 Landmark 2 Landmark M
x, y, θParticle

#2

Particle

N






FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter



FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1


