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Dynamical systems

• In general, refers to any system with a state that 

evolves over time

• More typically, refers to a system described by 

differential equations:
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Applied to robotics

• Describe how some behavioural 
variable changes in time, e.g. robot 
heading affected by targets and 
obstacles  

• Express how the robot’s state x
changes with the the control 
commands u (note x,u might be 
vectors)

• Express the linked interaction of the 
robot state xagent with the environment 
state xenv, where uagent, uenv are 
parameters of the agent or 
environment, and S is a sensing 
function, M a motor function 
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Applied to intelligent autonomy

Computational view: intelligent behaviour is a problem 
of finding the right representations and algorithms to 
transform (sensory) input to desired (motor) output.

Dynamical view: intelligent behaviour results from 
appropriate coupling of the brain-body-environment 
dynamics.

Need to explore:

• What minimal set of state variables account for the 
behaviour?

• What are the dynamical laws by which the state 
evolves in time?

• What is the sensitivity to variations in inputs and 
parameters?



Applied to collective robotics

• How do mixed groups of cockroaches 
and robots distribute themselves under 
two shelters? (Halloy et al., 2007)

• xi ri are number of cockroaches, 
robots under shelter i;  xe re number in 
empty space. Time evolution of these 
variables depends on R (rate of 
entering shelter) and Q (rate of 
quitting shelter), determined by the 
carrying capacity of the shelter S.

Experiment Model



Fixed points and stability

• Where                                     the system has a fixed point, i.e., 

once in that state, no further change will occur

• Such a point may be stable or unstable: if the system is disturbed, 

does it tend to return to this state or to diverge further?

• E.g. for one dimensional system, stability depends on the slope 

around the fixed point.
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Bichot, Mallot, Schöner 

(2000) control robot’s 

approach and avoid by 

defining ‘forcelets’ that 

attract or repel



Phase spaces

• Dynamical systems can be described 
in terms of their phase space:
– Each dimension represents one of the 

variables required to specify the state

– At each point in the space can define a 
vector representing the evolution of the 
state in time

– The system will follow a trajectory 
through state space

– The set of all trajectories (from every 
possible starting position) is called the 
flow

– It may be possible to identify interesting 
properties of the flow without necessarily 
being able to fully solve the dynamic 
equations
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Example: 

Braitenberg vehicle 

(Rañó, 2009)
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Stimulus E(x) for location x =(x,y)

describes the environmental effect 

on the sensors, where E is a 

smooth function, E(0) is a 

maximum with gradient ΔE(0)= 0;

Motor output is a smooth 

decreasing function F(E(x)), with 

minimum 0 at maximum stimulus, 

F(E(0))=0.

Can derive dynamics:
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Robot 

behaviour 

from θ=0, 

positive 

x,y
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Example: Force fields for 

limb control (Bizzi, Mussa-

Ivaldi, Giszter, 1991)

• Most limbs controlled by muscles in 

opponent pairs

• These act like dampened springs: 

depending on muscle stiffness, a 

perturbed limb will tend to return to 

particular position (the equilibrium point 

of the limb-muscle dynamics)

• Could control behaviour by changing 

stiffness and thus the equilibrium point

• Supporting evidence from measuring 

organised force fields produced by spinal 

activation in the frog



Example: Force fields for 

limb control (Bizzi, Mussa-

Ivaldi, Giszter, 1991)

C is predicted result of adding 

A and B, D is measured result



Other kinds of 

attractors:

Periodic motion – system 

follows a repeated 

trajectory

Chaotic – system stays in 

the same region but 

doesn’t repeat predictably

Limit cycles can be used 

for generating rhythmic 

behaviours



Example: Central pattern generators

• Many rhythmic behaviours 

in animals (e.g. breathing, 

chewing, walking, swimming, 

flying)  are produced by 

intrinsic oscillators

• Small networks of neurons 

produce regular alternating 

burst patterns

• These can be coupled and 

modulated in various ways to 

produce co-ordinated 

behaviour

• Lamprey swimming is a well 

studied example

(Grillner et al, Sci. Am. 1996)



Crespi & Ijspeert (2008)

Lamprey-inspired robot

angles torques



Crespi & Ijspeert (2008)

vi intrinsic frequency, Ri intrinsic amplitude, ai positive constant

wij and ϕij determine coupling

Left - right



Crespi & Ijspeert (2008)



Crespi & Ijspeert (2008)

• Step changes in the control parameters (frequency, phase, left or right 

amplitude (AL,AR) results in smooth transition to different oscillation 

patterns and resulting robot motion

• In some cases, smooth change to control parameter may produce a sharp 

transition (a bifurcation) in the dynamics to produce new pattern (e.g. gaits)



Useful properties of CPGs for robot control 

(see Ijspeert, 2008)

• CPG produces limit cycle behaviour and is thus robust to 
perturbation

• Very suited to distributed control, e.g. robots made up of 
variable number of modules

• Reduce dimensionality of the control problem as do not 
have to calculate for each actuator: can specify 
speed/direction/gait and dynamics solves the rest

• Introducing coupling from sensors can automatically 
entrain the dynamics to the robot’s body/environment 
constraints, e.g., resistance of water vs. air 

• Makes a good substrate for applying learning and 
optimisation methods.



Entraining oscillators to 

the resonant frequency 

of the robot’s dynamics

• E.g. ‘Puppy’ robot with 
actuated hip joint and 
passive spring knee joints

• Adaptive frequency 
oscillator uses sensor 
feedback to adjust 
control signal to match 
natural resonance

• Can immediately adapt to 
changes, such as > 20%  
weight difference

(Buchli et al., 2006)



A general framework for using dynamics in robot control? 

(Ijspeert et. al 2013)

• Idea: compose behaviour from sets of dynamic movement primitives:

• For f=0, these dynamics describe a simple spring-damper system with time 
constant τ, parameters αz, βz,  so that g (=goal) is a point attractor 

• To obtain arbitrary trajectories to g,   f is specified as follows:

• ‘canonical’ system variable x represents time passing, but in more flexible 
form, e.g. allows easy scaling in time, ‘stopping’ time etc.

• ‘output’ system f is a weighted composition from a set ψi of basis functions
(like predefined force fields); could also be set of oscillators

• Control problem is then to find the weights wi – can apply learning methods
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