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Keeping track

• Our aim is to keep track of the state of our robot, in particular 
of its location or pose relative to a map.

• Have multiple sources of information, about (intended) self 
motion and observed environment.

• All the information has some uncertainty, so we will maintain 
a probabilistic estimate.

• We want to ‘filter’ the current state and information to 
maintain the best possible estimate (c.f. sensor fusion).

• We can chose different ways of representing the probability 
distribution of our estimate. 

• We’ll start by using the first two moments, i.e. the mean and 
the variance, and assuming the normal distribution.



We are trying to estimate the state of a robot               

e.g. its pose 

At time t we apply some control signal                 

e.g. set wheel speeds

Then we take a measurement

e.g. distance to three known landmarks 
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Representing the probability of our estimate as a 

normal distribution



If we assume the system is linear with Gaussian noise…

tttttt uBxAx ε++= −1

Matrix (nxn) that describes how the state evolves from t to 
t-1 without controls or noise. Could be identity matrix.tA

Matrix (nxm) that describes how the control ut changes 
the state from t to t-1. Could be a zero matrix.tB

tε
Random variable representing the process noise, 
assumed to be independent and normally distributed 
with covariance Rt
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…and we assume the measurement is a linear function of the 

state,  with Gaussian noise…

tttt xCz δ+=

Matrix (kxn) that describes how to map the state xt to an 
observation zt. Could be identity matrixtC

tδ
Random variable representing the measurement noise, 
assumed to be independent and normally distributed 
with covariance Qt
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Prediction: apply the process model to predict the new mean and covariance

Measurement Innovation: apply the measurement model to predict the 

measurement and calculate how it differs from the actual measurement

Kalman Gain: calculate an appropriate weighting for the innovation 

based on the predicted covariance and the measurement noise

Correction: correct the prediction of the new mean and covariance 

according to the measurement innovation, weighted by the Kalman gain

( )111 ,)( −−− Σ= ttt Nxbel µ

( )ttt Nxbel Σ= ,)( µ…to obtain an optimal new estimate of 

the state distribution: 

…and we assume our previous estimate 

is normally distributed…

…then the optimal prediction is given by the Kalman Filter:



Kalman filter

• Kalman Gain term
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Transforms innovation 

(difference of measured and 

predicted error) into state 

through inverse of sensor model 

Weights the contribution of the 

innovation relative to the 

variance of the measurement 



Kalman filter

• Can be derived from the 
Bayes filter (see extra 
handout online); this 
depends on the fact that 
linear transformation of a 
Gaussian distribution is 
also Gaussian

• Under assumptions of 
linearity and gaussian 
independent noise, this is 
the optimal estimator for 
the state

• Has many applications
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Kalman filter

• Applied to human cognition by 
Grush (2004)

• “The idea is that in addition to 
simply engaging with the body and 
environment, the brain constructs 
neural circuits that act as models of 
the body and environment. During 
overt sensorimotor engagement, 
these models are driven by efference 
copies in parallel with the body and 
environment, in order to provide 
expectations of the sensory 
feedback, and to enhance and 
process sensory information.”

• E.g., what we see depends on what 
we expect to see.



Grush (2004): motor command is used to predict change in image, 

either directly (image emulator) or via system model. 



Limitations of the Kalman filter

• What if the system and measurements are non-linear?

• This is almost always the case in robot applications.

• Some possible solutions:

– take linear approximation around the current estimate to the 

non-linear functions (Extended Kalman filter)

– represent distributions by random samples (e.g. Particle 

filter)



Extending the Kalman filter

• Most realistic robotic problems involve 

nonlinear functions
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E.g. ‘simple’ motion model

Where the control action is a translational velocity vt and a 

rotational velocity ωt; these also have an associated error
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E.g. ‘Simple’ sensor model: assume have identifiable 

landmark j, with ‘signature’ sj at position mj,x, mj,y

• Usually assume feature independence: 

• Effect is to allow incremental update, feature by feature

• See Thrun et al 2005 pp.204-210 for details of resulting EKF filters
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The non-linear transform of a gaussian is not a gaussian

Linear transform Non-linear transform

Original distribution Original distribution

Result Result



The Extended Kalman filter works 

by linearising the function around the 

current estimate



• Prediction:

• Correction:

EKF Linearization: First Order Taylor Series Expansion
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EKF Algorithm 

1. Extended_Kalman_filter( µt-1,Σt-1, ut, zt):

2. Prediction:

3.

4.

5. Correction:

6.

7.

8.

9. Return µt,Σt
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http://www.cs.washington.edu/ai/Mobile_Robotics/

The Kalman Filter and EKF are just special case 

solutions of the Bayes filter:

An alternative non-parametric representation of 

the probability distribution Bel(xt) : particles

111 )(),|()|()( −−−∫= tttttttt dxxBelxuxPxzPxBel η



Particle filters

• Represent probability distribution as a set of 
discrete particles which occupy the state space

Particle = 

state hypothesis

Distribution = 

set of state hypotheses





From Particle Set to Particle Filter: 

• Initialize with M particles to represent Bel(x0)

• Update cycle:

– Prediction: for each particle, generate a new 

particle      drawn from

– Correction: draw particles from this set (with 

replacement) with probability proportional to: 
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Particle Filter Update Cycle: Visually
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After prediction

After correction



Particle Filter –

Advantages/Disadvantages
P

ro
b

a
b

ili
ty

• Can represent almost any 

probabilistic model, e.g.  

multi-modal distributions

• Relative easy to 

implement

• Can increase accuracy 

with computational 

resource

Number of particles grows 

exponentially with the 

dimensionality of the state 

space
1D – n particles

2D – n2 particles

mD – nm particles
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