
Filters

IAR Lecture 9

Barbara Webb

Keeping track

• Our aim is to keep track of the state of our robot, in particular
of its location or pose relative to a map.

• Have multiple sources of information, about (intended) self
motion and observed environment.

• All the information has some uncertainty, so we will maintain
a probabilistic estimate.

• We want to ‘filter’ the current state and information to
maintain the best possible estimate (c.f. sensor fusion).

• We can chose different ways of representing the probability
distribution of our estimate.

• We’ll start by using the first two moments, i.e. the mean and
the variance, and assuming the normal distribution.

We are trying to estimate the state of a robot

e.g. its pose

At time t we apply some control signal

e.g. set wheel speeds

Then we take a measurement

e.g. distance to three known landmarks

















=

nx

x

x M

1

















=

mu

u

u M

1

[]′= θ,, yxx

[]′= LR vvu ,

[]kzzz ,,1 K=

[]321 ,, distdistdistz =

()tttt xNxbel Σ= ,;)(µ
Representing the probability of our estimate as a

normal distribution

If we assume the system is linear with Gaussian noise…

tttttt uBxAx ε++= −1

Matrix (nxn) that describes how the state evolves from t to
t-1 without controls or noise. Could be identity matrix.tA

Matrix (nxm) that describes how the control ut changes
the state from t to t-1. Could be a zero matrix.tB

tε
Random variable representing the process noise,
assumed to be independent and normally distributed
with covariance Rt
















=

nx

x

x M

1
















=

mu

u

u M

1

…and we assume the measurement is a linear function of the

state, with Gaussian noise…

tttt xCz δ+=

Matrix (kxn) that describes how to map the state xt to an
observation zt. Could be identity matrixtC

tδ
Random variable representing the measurement noise,
assumed to be independent and normally distributed
with covariance Qt
















=

nx

x

x M

1

[]kzzz ,,1 K=

ttttt uBA += −1µµ t

T

tttt RAA +Σ=Σ −1

1)(−+ΣΣ= t

T

ttt

T

ttt QCCCK

tttt Cz µν −=

tttt CKI Σ−=Σ)(tttt Kνµµ +=

Prediction: apply the process model to predict the new mean and covariance

Measurement Innovation: apply the measurement model to predict the

measurement and calculate how it differs from the actual measurement

Kalman Gain: calculate an appropriate weighting for the innovation

based on the predicted covariance and the measurement noise

Correction: correct the prediction of the new mean and covariance

according to the measurement innovation, weighted by the Kalman gain

()111 ,)(−−− Σ= ttt Nxbel µ

()ttt Nxbel Σ= ,)(µ…to obtain an optimal new estimate of

the state distribution:

…and we assume our previous estimate

is normally distributed…

…then the optimal prediction is given by the Kalman Filter:

Kalman filter

• Kalman Gain term

t

T

ttt

T

tt

t
QCC

C
K

+Σ

Σ
=

Transforms innovation

(difference of measured and

predicted error) into state

through inverse of sensor model

Weights the contribution of the

innovation relative to the

variance of the measurement

Kalman filter

• Can be derived from the
Bayes filter (see extra
handout online); this
depends on the fact that
linear transformation of a
Gaussian distribution is
also Gaussian

• Under assumptions of
linearity and gaussian
independent noise, this is
the optimal estimator for
the state

• Has many applications

System

model

Sensor

model

State

estimate

Kalman

gain

Control

Measurement

Prediction

Innovation

Kalman filter

• Applied to human cognition by
Grush (2004)

• “The idea is that in addition to
simply engaging with the body and
environment, the brain constructs
neural circuits that act as models of
the body and environment. During
overt sensorimotor engagement,
these models are driven by efference
copies in parallel with the body and
environment, in order to provide
expectations of the sensory
feedback, and to enhance and
process sensory information.”

• E.g., what we see depends on what
we expect to see.

Grush (2004): motor command is used to predict change in image,

either directly (image emulator) or via system model.

Limitations of the Kalman filter

• What if the system and measurements are non-linear?

• This is almost always the case in robot applications.

• Some possible solutions:

– take linear approximation around the current estimate to the

non-linear functions (Extended Kalman filter)

– represent distributions by random samples (e.g. Particle

filter)

Extending the Kalman filter

• Most realistic robotic problems involve

nonlinear functions

),(1−= ttt xugx

)(tt xhz =

tttttt uBxAx ε++= −1

tttt xCz δ+=

E.g. ‘simple’ motion model

Where the control action is a translational velocity vt and a

rotational velocity ωt; these also have an associated error

),0()cos(cos

)sin(sin

1

1

1

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

RN

t

t
vv

t
vv

y

x

y

x

+

























∆

∆++

∆++−

+















=

















−

−

−

ω

ωθ
ω

θ
ω

ωθ
ω

θ
ω

θθ

E.g. ‘Simple’ sensor model: assume have identifiable

landmark j, with ‘signature’ sj at position mj,x, mj,y

• Usually assume feature independence:

• Effect is to allow incremental update, feature by feature

• See Thrun et al 2005 pp.204-210 for details of resulting EKF filters

mj,x,mj,y

xt,yt

θ
ϕ

r



















+



















−−−

−+−

=
















2

2

2

),(2tan

)()(

,,

2

,

2

,

s

r

j

xjyj

yjxj

i

t

i

t

i

t

s

xmyma

ymxm

s

r

α

α

α

ε

ε
ε

θφ
φ

),|(),|(mxzpmxzp t

i

i

ttt ∏=

The non-linear transform of a gaussian is not a gaussian

Linear transform Non-linear transform

Original distribution Original distribution

Result Result

The Extended Kalman filter works

by linearising the function around the

current estimate

• Prediction:

• Correction:

EKF Linearization: First Order Taylor Series Expansion

)(),(),(

)(
),(

),(),(

1111

11

1

1
11

−−−−

−−
−

−
−−

−+≈

−
∂

∂
+≈

ttttttt

tt

t

tt
tttt

xGugxug

x
x

ug
ugxug

µµ

µ
µ

µ

)()()(

)(
)(

)()(

ttttt

tt

t

t
tt

xHhxh

x
x

h
hxh

µµ

µ
µ

µ

−+≈

−
∂

∂
+≈

EKF Algorithm

1. Extended_Kalman_filter(µt-1,Σt-1, ut, zt):

2. Prediction:

3.

4.

5. Correction:

6.

7.

8.

9. Return µt,Σt

),(1−= ttt ug µµ

t

T

tttt RGG +Σ=Σ −1

1)(−+ΣΣ= t

T

ttt

T

ttt QHHHK

))((ttttt hzK µµµ −+=

tttt HKI Σ−=Σ)(

1

1),(

−

−

∂
∂

=
t

tt
t

x

ug
G

µ

t

t
t

x

h
H

∂
∂

=
)(µ

ttttt uBA += −1µµ

t

T

tttt RAA +Σ=Σ −1

1)(−+ΣΣ= t

T

ttt

T

ttt QCCCK

)(tttttt CzK µµµ −+=

tttt CKI Σ−=Σ)(

http://www.cs.washington.edu/ai/Mobile_Robotics/

The Kalman Filter and EKF are just special case

solutions of the Bayes filter:

An alternative non-parametric representation of

the probability distribution Bel(xt) : particles

111)(),|()|()(−−−∫= tttttttt dxxBelxuxPxzPxBel η

Particle filters

• Represent probability distribution as a set of
discrete particles which occupy the state space

Particle =

state hypothesis

Distribution =

set of state hypotheses

From Particle Set to Particle Filter:

• Initialize with M particles to represent Bel(x0)

• Update cycle:

– Prediction: for each particle, generate a new

particle drawn from

– Correction: draw particles from this set (with

replacement) with probability proportional to:

February 29, 2008 24SLAM

),|(1

i

ttt xuxp −

111)(),|()|()(−−−∫= tttttttt dxxBelxuxPxzPxBel η

)|(i

tt xzp

i

tx

Particle Filter Update Cycle: Visually

)|(i

tt xzp

),|(1

i

ttt xuxp −

After prediction

After correction

Particle Filter –

Advantages/Disadvantages
P

ro
b

a
b

ili
ty

• Can represent almost any

probabilistic model, e.g.

multi-modal distributions

• Relative easy to

implement

• Can increase accuracy

with computational

resource

Number of particles grows

exponentially with the

dimensionality of the state

space
1D – n particles

2D – n2 particles

mD – nm particles

References:
Sebastian Thrun, Wolfram Burgard and

Dieter Fox, “Probabilistic Robotics”,

MIT Press, Cambridge MA, 2005

Roland Siegwart & Illah Nourbakshsh

“Introduction to Autonomous

Robotics” MIT Press, Cambridge

MA, 2011

