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Sensing for Action

• Sensors transduce energy from one form to another

• From the robot control point of view we have some information 
– a measured value – that represents some property of the world

• This relationship is rarely a direct one:

E.G.  We say the IR sensor is a ‘range’ or ‘distance’ sensor:

Distance to object →

Light scattering →

Amount of light reflected →

Resistance of sensor element →

Voltage →

Analog to Digital Conversion→

Calculation →

Distance value
But note! We may not need to know 

the actual distance to perform the 

appropriate action, such as “avoid”



Describing sensors

• Sensitivity: 

– ratio of output change to input change

– Usually a trade-off with range (min to max)

• Resolution:

– Limit in resolving power of output scale

• Precision:

– Repeatability of measurements (under same conditions)

• Accuracy:

– (lack of) error in measurements



Accuracy

• Sometimes described in terms of the mean of the error 

(precision relates to the variance of error)

• Calibration can remove some but not all inaccuracy. E.g. for a 

linear sensor there may remain:

– Uncertainty about the offset 

– Uncertainty about the slope (% error)

– Uncertainty about deviations from linearity

• Combined with imprecision, inaccuracy may limit the effective

resolution much more than the output scale



Example: IR sensors on the Khepera
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Calculation of distance from reading



Describing sensors

• Selectivity

– Inaccuracy is often the result of cross-sensitivity to 

environmental properties other than the target 

property

– E.g. many transducers are affected by temperature

– For IR, reflectance of the  object and ambient light 

will alter the ‘distance’ reading



Describing in form of a sensor model

• E.g. what is the probability distribution of the sensor 

reading from a range sensor, given the wall distance?

Possible sources of error:

1. Noise in the actual 

distance measure

2. Person passing

3. Random measurements

4. Maximum range 

measurements

Thrun (2005)



Measurement noise
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Describe each error source as a distribution

z is sensor signal, x is robot pose, m is world model, {x,m} define expected zexp

Thrun (2005)



Random measurement Max range
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Describe each error source as a distribution

Thrun (2005)



Combine as a mixture density
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Note, this seems to assume we know the real distance, zexp

• May be in context of calibration; use to learn parameters α

• Knowing P(z|zexp) can be applied (through Bayes theorem) to 

determine P(zexp|z) = P(z|zexp)P(zexp)/P(z) (see later lectures)

Thrun (2005)



Sensor/signal conditioning

• E.g. linear transformation:

• Many signals may need non-linear transformation

• Might need to tune linear or non-linear parameters through 

learning methods (again, this can be action-relative)

• ‘Intelligence’ might be introduced at this level to make 

sensing adaptive, i.e., sensor/system itself detects:

– Is the output a reasonable value (e.g. relative to previous 

measurements or other sensor reports)?

– Is the full range being used?

– Is the sensor stuck at one extreme?

inputgainoffsetoutput ×+=



Sensor/signal conditioning

• Low-pass filtering:

– Low-pass: usually 

against noise or other 

rapid fluctuations 

• Highpass filtering:

– interested in 

fluctuations not 

background

Response 

of Limulus 

sensory 

neuron to 

light 



Sensor processing

Implies a more complex transformation than 

conditioning:

• Logic functions (e.g. triggers for action)

• Data reduction (e.g. extracting features)

• Decision making (e.g. classification)



Sensor “fashion”

Sensor “fission”

Sensor “fusion”

Combining sensors



Sensor fusion

The information provided by different sensors might be: 

• Complementary: sensors that measure different attributes of 
same target → Fusion could provide richer description

• Co-operative: can derive new feature by combining several 
attributes (e.g. triangulation) → Fusion could disambiguate

• Competitive/redundant: different sensors that measure the 
same attribute → Fusion could provide better estimate of 
actual value



Sensor fusion
A standard approach is to use a weighted average.

Assume N sensors provide measurements z of property x with 

some Gaussian distributed noise 

Combined estimate is weighted average:

Maximum likelihood estimation says optimal weighting is: 

Note there are also adaptive methods that modify the weights 

over time, e.g. democratic cue integration: sensors with 

values near the combined estimate increase their weights, 

those further away decrease.
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Simple example with two measurements
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Robot uses two different sensors to 

measure distance to a wall:
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single measure

Seigwart & Nourbakhsh, 2004
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Combined estimate:

Variance of combined estimate − 



What about updating successive estimates for a moving robot?
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Or in general, updating estimate with the k+1th measurement:

Seigwart & Nourbakhsh, 2004

Can rearrange in terms of successive estimates:



For a moving robot, can first predict the change, then 

combine this with the new measurement

Robot moves at velocity u, 

with noise w

Our estimate should incorporate 

the predicted change:

Then update with the measurement: 

Generalised form of this is 

the Kalman filter…

Seigwart & Nourbakhsh, 2004
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