Sensing for action

IAR Lecture 3 Barbara Webb

Sensing for Action

- Sensors transduce energy from one form to another
- From the robot control point of view we have some information a measured value that represents some property of the world
- This relationship is rarely a direct one:
- E.G. We say the IR sensor is a 'range' or 'distance' sensor: Distance to object \rightarrow

Light scattering \rightarrow

Amount of light reflected \rightarrow

Resistance of sensor element \rightarrow

Voltage \rightarrow

Analog to Digital Conversion \rightarrow

Calculation \rightarrow

But note! We may not need to know the actual distance to perform the appropriate action, such as "avoid"

Distance value

Describing sensors

- Sensitivity:
 - ratio of output change to input change
 - Usually a trade-off with *range* (min to max)
- Resolution:
 - Limit in resolving power of output scale
- Precision:
 - Repeatability of measurements (under same conditions)
- Accuracy:
 - (lack of) error in measurements

Accuracy

- Sometimes described in terms of the mean of the error (*precision* relates to the variance of error)
- Calibration can remove some but not all inaccuracy. E.g. for a linear sensor there may remain:
 - Uncertainty about the offset
 - Uncertainty about the slope (% error)
 - Uncertainty about deviations from linearity
- Combined with imprecision, inaccuracy may limit the *effective* resolution much more than the output scale

Example: IR sensors on the Khepera

Describing sensors

- Selectivity
 - Inaccuracy is often the result of *cross-sensitivity* to environmental properties *other* than the target property
 - E.g. many transducers are affected by temperature
 - For IR, reflectance of the object and ambient light will alter the 'distance' reading

Describing in form of a *sensor model*

• E.g. what is the probability distribution of the sensor reading from a range sensor, given the wall distance?

Thrun (2005)

z is sensor signal, *x* is robot pose, *m* is world model, $\{x, m\}$ define expected z_{exp} Thrun (2005)

$$P_{rand}(z \mid x, m) = \eta \, \frac{1}{z_{\max}}$$

$$P_{\max}(z \mid x, m) = \begin{cases} 1 \text{ if } z = z_{\max} \\ 0 \text{ otherwise} \end{cases}$$

Thrun (2005)

Combine as a mixture density

Note, this seems to assume we know the real distance, z_{exp}

- May be in context of calibration; use to learn parameters α
- Knowing $P(z|z_{exp})$ can be applied (through Bayes theorem) to determine $P(z_{exp}|z) = P(z|z_{exp})P(z_{exp})/P(z)$ (see later lectures)

Thrun (2005)

Sensor/signal conditioning

- E.g. linear transformation: *output = offset + gain × input*
- Many signals may need non-linear transformation
- Might need to tune linear or non-linear parameters through learning methods (again, this can be action-relative)
- 'Intelligence' might be introduced at this level to make sensing adaptive, i.e., sensor/system itself detects:
 - Is the output a reasonable value (e.g. relative to previous measurements or other sensor reports)?
 - Is the full range being used?
 - Is the sensor stuck at one extreme?

Sensor/signal conditioning

- Low-pass filtering:
 - Low-pass: usually against noise or other rapid fluctuations
- Highpass filtering:
 - interested in fluctuations not background

Sensor processing

Implies a more complex transformation than conditioning:

- Logic functions (e.g. triggers for action)
- Data reduction (e.g. extracting features)
- Decision making (e.g. classification)

Combining sensors

Sensor fusion

The information provided by different sensors might be:

- Complementary: sensors that measure different attributes of same target → Fusion could provide richer description
- Co-operative: can derive new feature by combining several attributes (e.g. triangulation) → Fusion could disambiguate
- Competitive/redundant: different sensors that measure the same attribute → Fusion could provide better estimate of actual value

Sensor fusion

A standard approach is to use a weighted average.

Assume N sensors provide measurements z of property x with some Gaussian distributed noise $\overline{z} = x + c = c \approx N(0, \sigma)$

$$z_i = x + \varepsilon_i, \varepsilon_i \approx N(0, \sigma_i)$$

Combined estimate is weighted average:

 $\hat{x} = \sum_{i=1}^{N} w_i z_i, \quad \sum_{i=1}^{N} w_i = 1$

Maximum likelihood estimation says optimal weighting is:

$$w_{i} = \frac{1/\sigma_{i}^{2}}{\sum_{j=1}^{N} 1/\sigma_{j}^{2}}$$

Note there are also adaptive methods that modify the weights over time, e.g. *democratic cue integration*: sensors with values near the combined estimate increase their weights, those further away decrease.

Simple example with two measurements

Robot uses two different sensors to measure distance to a wall:

- z_1 with variance σ_1^2
- z_2 with variance σ_2^2

Combined estimate:

$$\hat{x} = \frac{1/\sigma_1^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_1 + \frac{1/\sigma_2^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_2$$

Variance of combined estimate – $\sigma^{2} = \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2} + \sigma_{2}^{2}}$

- will be less than that of either single measure

Seigwart & Nourbakhsh, 2004

Can rearrange in terms of successive estimates:

$$\hat{x} = \frac{1/\sigma_1^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_1 + \frac{1/\sigma_2^2}{1/\sigma_1^2 + 1/\sigma_2^2} z_2$$
$$= z_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (z_2 - z_1)$$

Or in general, updating estimate with the k+1th measurement:

$$\hat{x}_{k+1} = \hat{x}_k + K_{k+1}(z_{k+1} - \hat{x}_k)
\sigma_{k+1}^2 = \sigma_k^2 - K_{k+1}\sigma_k^2
K_{k+1} = \frac{\sigma_k^2}{\sigma_k^2 + \sigma_z^2} ; \sigma_k^2 = \sigma_1^2 ; \sigma_z^2 = \sigma_2^2$$

What about updating successive estimates for a moving robot?

Seigwart & Nourbakhsh, 2004

For a moving robot, can first predict the change, then combine this with the new measurement

References

Shigang Yue · Roger D. Santer · Yoshifumi Yamawaki · F. Claire Rind. Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated. *Autonomous Robots* 2009.

Sebastian Thrun, Wolfram Burgard and Dieter Fox, "Probabilistic Robotics", MIT Press, Cambridge MA, 2005
Roland Siegwart & Illah Nourbakshsh "Introduction to Autonomous Robotics" MIT Press, Cambridge MA, 2004 (or 2nd edition, 2011)