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Sensing for Action

« Sensors transduce energy from one form to another

* From the robot control point of view we have some information
— a measured value — that represents some property of the world

« This relationship 1s rarely a direct one:
E.G. We say the IR sensor 1s a ‘range’ or ‘distance’ sensor:

Distance to object —
Light scattering —
Amount of light reflected —
Resistance of sensor element —
Voltage —
Analog to Digital Conversion—
Calculation —

But note! We may not need to know .
Distance value

the actual distance to perform the
appropriate action, such as “avoid”



Describing sensors

Sensitivity:

— ratio of output change to input change

— Usually a trade-off with range (min to max)
Resolution:

— Limit in resolving power of output scale
Precision.

— Repeatability of measurements (under same conditions)
Accuracy:

— (lack of) error in measurements



Accuracy

» Sometimes described in terms of the mean of the error
(precision relates to the variance of error)

« (alibration can remove some but not all inaccuracy. E.g. for a
linear sensor there may remain:

— Uncertainty about the offset
— Uncertainty about the slope (% error)
— Uncertainty about deviations from linearity

e Combined with imprecision, inaccuracy may limit the effective
resolution much more than the output scale
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Describing sensors

o Selectivity

— Inaccuracy is often the result of cross-sensitivity to
environmental properties other than the target

property
— E.g. many transducers are affected by temperature

— For IR, reflectance of the object and ambient light
will alter the ‘distance’ reading



Describing 1in form of a sensor model

* E.g. what 1s the probability distribution of the sensor
reading from a range sensor, given the wall distance?

1. Noise in the actual
distance measure

2. Person passing — N —
3. Random measurements S

4, Maximum range - Y

measurements = ——— -

Possible sources of error: \

—

Thrun (2005)



Describe each error source as a distribution

Measurement noise
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0 otherwise

z is sensor signal, x is robot pose, m is world model, {x,m} define expected z,,,

Thrun (2005)



Describe each error source as a distribution

Random measurement

0 4 exp Zmax

1
})rand(z|x9m):772_

max

Max range
0 Zexp Zmax
lif z=z
P (z|x,m)= / o
0 otherwise

Thrun (2005)



Combine as a mixture density

(o ) fPhixz|xm> )
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. / K arand Y, K rand (Z | X, M ) )

Note, this seems to assume we know the real distance, z

> “exp

May be in context of calibration; use to learn parameters o

Knowing P(z|z,,,) can be applied (through Bayes theorem) to
determine P(z,,,|z) = P(z|z,,,)P(z,,,)/P(z) (see later lectures)

exp

Thrun (2005)



Sensor/signal conditioning

E.g. linear transformation: output = offset + gain xinput
Many signals may need non-linear transformation

Might need to tune linear or non-linear parameters through
learning methods (again, this can be action-relative)

‘Intelligence’ might be introduced at this level to make
sensing adaptive, 1.€., sensor/system itself detects:

— Is the output a reasonable value (e.g. relative to previous
measurements or other sensor reports)?

— Is the full range being used?

— Is the sensor stuck at one extreme?



Sensor/signal conditioning

a. Low-pass Filter

* Low-pass filtering:

— Low-pass: usually
against noise or other
rapid fluctuations

« Highpass filtering:
— Interested 1n

fluctuations not
background
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Sensor processing

Implies a more complex transformation than
conditioning:

* Logic functions (e.g. triggers for action)
» Data reduction (e.g. extracting features)

* Decision making (e.g. classification)



Combining sensors
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Sensor fusion

The information provided by different sensors might be:

 Complementary: sensors that measure different attributes of
same target — Fusion could provide richer description

» Co-operative: can derive new feature by combining several
attributes (e.g. triangulation) — Fusion could disambiguate

« Competitive/redundant: different sensors that measure the
same attribute — Fusion could provide better estimate of
actual value



Sensor fusion

A standard approach 1s to use a weighted average.

Assume N sensors provide measurements z of property x with

some Gaussian distributed noise
z.=x+¢&,6, =~ N0,0))

Combined estimate 1s weighted average:

. N N
X=) _ wz, Cow, =1
=1 U =1 !

Maximum likelihood estimation says optimal weighting is:
1/o;
Z j=1 / Gj

Note there are also adaptive methods that modify the weights
over time, €.g. democratic cue integration: sensors with
values near the combined estimate increase their weights,
those further away decrease.




Simple example with two measurements

Robot uses two different sensors to
measure distance to a wall:
. . 2
z, with variance o,

. . 2
z, with variance o,

Combined estimate: ' @) )
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Seigwart & Nourbakhsh, 2004



Can rearrange 1n terms of successive estimates:
/o] /o2
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Or in general, updating estimate with the k+1t measurement:
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What about updating successive estimates for a moving robot?

Seigwart & Nourbakhsh, 2004



For a moving robot, can first predict the change, then
combine this with the new measurement

Robot moves at velocity u,

with noise w
dx
— = utw
dt

Our estimate should incorporate |

the predicted change:
Xpo = Xt ull = 1)

7 ) g
Op = Ot O,l1, 1 — 1]

Op(fgiy)

Then update with the measurement: ™"

Xppp = Xpt K (e —xp)
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Seigwart & Nourbakhsh, 2004
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Generalised form of this is

—— -
o,+o,[t,.,—t]+o. theKalman filter...
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