Exploiting dynamics

IAR Lecture 14
Barbara Webb



Dynamical systems

* In general, refers to any system with a state that
evolves over time

* More typically, refers to a system described by
differential equations:

x=f(x,a,t)



Applied to robotics

Describe how some behavioural
variable changes in time, e.g. robot

heading affected by targets and ¢ = fobsmcle (@) + ftarget (@)
obstacles
Express how the robot’s state x x= f(x,u)

changes with the the control
commands u (note x,u might be
vectors)

Express the linked interaction of the
robot state x,_, -with the environment

agent
tate x here u ar —
StatC X, WHETE agenp> Ueny ALC xagent agent (xagent 2 S(xenv)7 uagent )’
parameters of the agent or
environment, and S'is a sensing X, = [ (X s M (X g0 )5 Uy,

function, M a motor function
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Applied to collective robotics

How do mixed groups of cockroaches
and robots distribute themselves under

shelters? (Halloy et al., 2007)

x; r; are number of cockroaches,
robots under shelter 1; x, », number in
empty space. Time evolution of these
variables depends on R (rate of
entering shelter) and Q (rate of . Do s
quitting shelter), determined by the dri/dy = Rere = Orri 1= 12
carrying capacity of the shelter S.
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Fixed points and stability

Where x= f(x)=0 the system has a fixed point, i.e.,
once in that state, no further change will occur

Such a point may be stable or unstable: if the system is disturbed,
does it tend to return to this state or to diverge further?

E.g. for one dimensional system, stability depends on the slope
around the fixed point.

dx/dt=f(x)
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attract or repel




Phase spaces

e Dynamical systems can be described
in terms of their phase space:

Each dimension represents one of the
variables required to specify the state

At each point in the space can define a
vector representing the evolution of the
state in time

The system will follow a trajectory
through state space

The set of all trajectories (from every
possible starting position) is called the

flow

It may be possible to identify interesting
properties of the flow without necessarily
being able to fully solve the dynamic
equations
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Example: vy _
Braitenberg vehicle ‘} e W |
., "\ e & | @
(Rafio, 2009) —X - (T
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Stimulus E(x) for location x =(x,y)

describes the environmental effect v, U_ l'x.._ﬂ v,
on the sensors, where E 1s a ; -
smooth function, E£(0) 1s a “Wheelbase d
maximum with gradient AE(0)= 0;

Motor output 1s a smooth .

decreasing function F(E(x)), with *=F(E(x,))cos ¢
minimum 0 at maximum stimulus, y=F(E (XO ))sin @
F(EQ))=0. S

0 = —EVF(E(xO ).e,

Can derive dynamics:



x=F(E(x,))cos6 y=F(E(x,))siné
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Example: Force fields for
limb control (Bizz1, Mussa-

Ivaldi, Giszter, 1991)

* Most limbs controlled by muscles in
opponent pairs

 These act like dampened springs:
depending on muscle stiffness, a
perturbed limb will tend to return to
particular position (the equilibrium point
of the limb-muscle dynamics)

 Could control behaviour by changing
stiffness and thus the equilibrium point

 Supporting evidence from measuring

organised force fields produced by spinal
activation in the frog




Force fields for

Example
limb control (B

, Mussa-

1271

Ivaldi, Giszter, 1991)
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Other kinds of

attractors: N “3‘\ /
Periodic motion — system f ‘jﬁ\“
follows a repeated / X,

trajectory X, & oady e
steaay state

Chaotic — system stays in
the same region but
doesn’t repeat predictably

c. X5

Limit cycles can be used
for generating rhythmic %,

behaviours quasiperiodic motion

chaotic attractor




Example: Central pattern generators

* Many rhythmic behaviours
in animals (e.g. breathing,
chewing, walking, swimming,
flying) are produced by
intrinsic oscillators

e Small networks of neurons
produce regular alternating
burst patterns

 These can be coupled and
modulated in various ways to
produce co-ordinated
behaviour

« Lamprey swimming is a well
studied example
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Cresp1 & Ijspeert (2008)

Lamprey-inspired robot
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Crespi & Ijspeert (2008)

Phase 6 =2rv, +Z w, sin(@, —6, - ¢, ) o i Fobot
%-f) P — £
C o —— .
y a, . . — %
Amplitude |7; = a,| —(R, —r,.)—r,.} > RN I I
4 | ) —| [ — %
| s oS .
Output x, =r,(1+cos(6))) o) L — g
Robot \ (P,

v; intrinsic frequency, R; intrinsic amplitude, a; positive constant
w; and ¢; determine coupling

An isolated oscillator converges to:

Setpoints: (¢, =x;, —x,._,

x; ()=R,(1+cosQrvit+6,)) Left - right



Crespi & Ijspeert (2008)
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Crespi & Ijspeert (2008)
* Step changes in the control parameters (frequency, phase, left or right

amplitude) results in smooth transition to different oscillation patterns and
resulting robot motion
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* In some cases, smooth change to control parameter may produce a sharp
transition (a bifurcation) in the dynamics to produce new pattern (e.g. gaits)



Usetul properties of CPGs for robot control
(see Ijspeert, 2008)

CPG produces limit cycle behaviour and 1s thus robust to
perturbation

Very suited to distributed control, e.g. robots made up of
variable number of modules

Reduce dimensionality of the control problem as do not
have to calculate for each actuator: can specify
speed/direction/gait and dynamics solves the rest

Introducing coupling from sensors can automatically
entrain the dynamics to the robot’s body/environment
constraints, e.g., resistance of water vs. air

Makes a good substrate for applying learning and
optimisation methods.



Entraining oscillators to

the resonant frequency

of the robot’s dynamics

 E.g. ‘Puppy’ robot with
actuated hip joint and
passive spring knee joints

« Adaptive frequency
oscillator uses sensor
feedback to adjust
control signal to match
natural resonance

e (Can immediately adapt to 3

changes, such as > 20%
weight difference

(Buchli et al., 2006)
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A general framework for using dynamics in robot control?

(Schaal et. al 2007)

Idea: compose behaviour from sets of dynamic movement primitives:
z=a (f.(g-y)-2)+ ]
=z

For /=0, these dynamics describe a simple spring-damper system with
parameters a,, B, so that g (=goal) is a point attractor

To obtain arbitrary trajectories to g, fis specified as follows:
y: l// —h; (x—¢; )2

WX ,
f(xagayo): Z (g_yo)9 W, =¢€ , WX=—0X

1

‘canonical’ system variable x represents time passing, but in more flexible
form, e.g. allows easy scaling in time, ‘stopping’ time etc.

‘output’ system f is a weighted composition from a set y; of basis functions
(like predefined force fields); could also be set of oscillators

Control problem is then to find the weights w; — can apply learning methods
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