Particle Filters;
Simultaneous Localization and Mapping (Intelligent Autonomous Robotics)

Subramanian Ramamoorthy School of Informatics

## Recap: State Estimation using Kalman Filter

- Project state and error covariance forward in time:
e.g., during a tíme interval, you expect the ball to go from 1 m to 1.5 m ,
 with some uncertainty increase
- Update estimate after measurement:
in fact, vision sees ball going to 1.7 m so you update your estimates to
conclude ball must be at 1.6 m with some new level of uncertainty



## Recap: State Estimation using Kalman Filter

- Project state and error covariance forward in time:

$$
\begin{aligned}
& \hat{x}_{k}^{-}=A \hat{x}_{k-1}+B u_{k} \\
& P_{k}^{-}=A P_{k-1} A^{T}+Q
\end{aligned}
$$



- Update estimate after measurement:

$$
\begin{aligned}
& \hat{x}_{k}=\hat{x}_{k}^{-}+K_{k}\left(z_{k}-H \hat{x}_{k}^{-}\right) \\
& K_{k}=P_{k}^{-} H^{T}\left(H P_{k}^{-} H^{T}+R\right)^{-1} \\
& P_{k}=\left(I-K_{k} H\right) P_{k}^{-}
\end{aligned}
$$



## Limitations of the Kalman Filter

- Optimal state estimator for Linear systems \& Gaussian noise
- Most robots involve nonlinear dynamics (simple example: stickslip friction and slippage in tyres)
- Many commonly used sensors, e.g., sonar, involve more complex type of noise
- In complex scenarios (e.g., estimating positions of obstacles in a room), one is dealing with multi-modal distributions
- Standard extensions for nonlinearity may not be satisfactory:
- If initial state estimate is wrong, or if process is incorrectly modeled, the filter could quickly diverge
- Covariance is underestimated


## Particle Filter

Represent probability distribution as a set of discrete particles which occupy the state space - efficient for nonGaussian distributions


Particle $=$ state hypothesis Distribution $=$ set of state hypotheses

## Sample Based Posterior Probabilities

Set of weighted samples

$$
S=\left\{\left\langle s_{\uparrow}^{(i)}, w^{(i)}\right\rangle \mid i=1, \ldots, N\right\}
$$

State hypothesis
e.g., distance could be 4, 5 or 6 m

- each value is a hypothesis.

Importance weight
But, it is much more likely that
the true value is 6 m , and not 4 m .

The samples represent the posterior

$$
p(x)=\sum_{i=1}^{N} w_{i} \cdot \delta_{s(i)}(x)
$$

True measurement is estimated as weighted average of all hypotheses.

## Approximating the Posterior

Particle sets can be used to approximate functions

- sample from 'proposal' distribution
- update hypotheses using measurements


X


X

The more particles fall into an interval, the higher the probability of that interval

How to draw samples form a function/distribution?

## Drawing Samples from a Distribution: Rejection Sampling

Let us assume that $f(x)<1$ for all $x$
Sample $x$ from a uniform distribution
Sample $c$ from $[0,1]$
if $f(x)>c \quad$ keep the sample otherwise reject the sample


X

## Better Idea: Importance Sampling

We can use a different distribution $g$ to generate samples from $f$
By introducing an importance weight w, we can account for the "differences between $g$ and $f$ "
$w=f / g$
$f$ is called target
$g$ is called proposal


X
role of $w$,
consider this point

## From Sampling to the Particle Filter

- Posterior distribution $\Leftrightarrow$ set of sample hypotheses
- Filter update (i.e., state estimate) based on actual actions and observations by the robot
- The particle filter algorithms involves three steps:

1. Sampling particles from a proposal distribution

- (This is like the 'prediction' step in KF)

2. Computing the particle weight (importance sampling)

- (This is like the 'correction' step in KF)

3. Resampling - an additional 'statistical' correction step

## Particle Filter Update Cycle

What are possible values for estimated state
(given past state/control)?

Distribution needs to be adjusted for consistency


## Particle Filter - Advantages/Disadvantages

Nonparametric, Handles multi-modal distributions


Number of particles grows exponentially with the dimensionality of the state space

1-dim $\Leftrightarrow n$ particles<br>2-dim $\Leftrightarrow n^{2}$ particles $m$-dim $\Leftrightarrow n^{m}$ particles

## What is SLAM?

Consider the following scenario:

- Your robot is called upon to explore below ice sheet in a lake in Antarctica
- You do not have a map of the terrain
- You may sense your current position
 using a combination of vision and sonar -very noisy!
- Robot needs to do two things at once:
- Explore the terrain and draw a map
- Use measurements to locate itself within map



## The SLAM Problem

Estimate the pose and the map of a mobile robot at the same time


Let's first think about one piece...

## Problem: Location Estimation, given a map

Simple question: Where are you (within the given map)?

- Instead of a single hypothesis about location, maintain probability distribution over hypotheses
- Use estimation algorithm to improve knowledge given sequence of measurements
- Density function can have arbitrary form (e.g., multiple modes) - so, use algorithm like particle filters

But first, a naïve question: if you have a map and a stream of measurements, couldn't you just trace your path?


## View through the robot's "eyes"...


[Source: http://www.cs.washington.edu/ai/Mobile_Robotics]

## Problem with Dead Reackoning

- Simply integrating robot velocity commands from a known starting point gets the robot hopelessly lost
- Same thing if you integrate on-board odometry (position)



## Probabilistic Localization: Basic Idea

- Robot in 1-dim world
- Initially, it is lost: uniform distribution
- Queries sensor to find it is near a door: increase probability near all doors
- Multimodal distribution, need more information!
- Robot moves, to door \#2
- Move increases uncertainty, squashes state distribution
- Robot queries sensor again and localizes itself!



## Some Remarks on Localization

- If the doors were uniquely identifiable then the problem is merely that of sensor noise - use a Kalman filter
- In fact, robot can not be sure which door it has sensed this is the data association problem
- Beliefs are inherently multimodal due to ambiguities
- The benefit of the probabilistic approach lies in the ability to explicitly represent and reason about this ambiguity
- Localization involves two major issues:

1. Representing the belief $P(x)$ (where could I possibly be?)
2. Computing conditional probabilities (where could I be, given what I see?)

## How to represent map (configuration space)?

There are a number of choices and they determine how we deal with the computation. Two examples:


Simple - use a grid

- Landmark based methods:
e.g., derived from a Voronoi graph



## Probabilistic Localization (Recursive Filtering)

Problem: Estimate posterior probability of states $P(x(k) \mid u(0: k-1), y(1: k))$, given sensor readings $y(1: k)$ obtained by movements $u(0: k-1)$.

Assume that robot is given a map $m$, all terms are conditioned on this knowledge.
Probabilistic localization uses current measurements, to update our most recent (prior) estimate in order to obtain an improved (posterior) estimate,

Sensor Model: Probability of current
$P(x(k) \mid u(0: k-1), y(1: k)) \ldots \ldots .$. observation given current state

$$
=\eta(k) P(y(k) \mid x(k))
$$

$$
\sum_{x_{k-1} \in X}(P(x(k) \mid u(k-1), x(k-1)) \cdot P(x(k-1) \mid u(0: k-2), y(1: k-1)))
$$

Motion model: Probability of current state, given previous state and action

Probability of state, given past history

## Localization - procedurally...

- When you get odometry reading $u(k-1)$, prediction step:

$$
\begin{aligned}
& P(x(k) \mid u(0: k-1), y(1: k-1)) \\
& \quad=\sum_{x_{k-1} \in X}(P(x(k) \mid u(k-1), x(k-1)) P(x(k-1) \mid u(0: k-2), y(1: k-1)))
\end{aligned}
$$

- Then, when you get a measurement $y(k)$, update step:

$$
\begin{aligned}
& \eta(k)=\left[\sum_{x(k) \in X} P(y(k) \mid x(k)) P(x(k) \mid u(0: k-1), y(1: k-1))\right]^{-1} \\
& P(x(k) \mid u(0: k-1), y(1: k)) \\
& \quad=\eta(k) P(y(k) \mid x(k)) P(x(k) \mid u(0: k-1), y(1: k-1))
\end{aligned}
$$

Note: All discrete sums may be replaced by integrals.

## The Mapping Problem (structure of the environment)

- Based on a trace of observations, can we build a map?
- Robot must cope with two forms of uncertainty: noise in perception (y) and noise in odometry ( $u$ ).
- Assume 'localization is solved' - robot knows where it is
- A simple way to build a map: Occupancy grid - Each cell in a 2-dim grid $m$ stores the probability that it is occupied



## Occupancy Grids

- Impose grid on space to be mapped
- Identify an inverse sensor model

$$
p\left(m_{x} \mid y_{t}\right)
$$

- Update odds that grid cells are occupied



## Simultaneous Localization and Mapping

## Major approaches:

- Historical: Given a set of landmarks (e.g., I know goal posts in a stadium), use Kalman Filter type algorithms to estimate joint posterior probability over maps and robot locations
- Global optimization: Consider locations as random variables and derive constraints between locations using overlapping measurements (parameter optimization to minimize error)
- Neither one good for truly on-line applications, so many variations based on Bayesian statistics have been developed.


## Bayesian SLAM:

## Posterior Probability of Map and Location

Motion model: Given what I just did and where I have just been, where am 1?

Sensor model: Given where I am in a map, what could I expect to see?

$$
\begin{aligned}
& P(x(1: k), m \mid u(0: k-1), y(1: k))=\alpha P(y(k) \mid x(k), m) \\
& \quad P(x(1: k-1), m \mid u(0: k-2), y(1: k-1))) d x(1: k-1)
\end{aligned}
$$

Map Refinement: Given everything I've done and seen so far, what is my best guess of the map and my place in it?

## Graphical Model for Probabilistic SLAM



Each node represents variable to be estimated and each arrow represents conditional dependence. (Note: observations are denoted z instead of y )

## Demo (using FastSLAM Algorithm)


[Source: http://www.cs.washington.edu/ai/Mobile_Robotics/]

References:

- H. Durrant-Whyte and T. Bailey, Simultaneous localization and mapping, IEEE Robotics and Automation Magazine, pp. 99 - 108, June 2006.
- S. Thrun et al., Probabilistic Robotics, MIT Press, 2005.

Acknowledgement:
Many pictures and equations in this presentation are taken from Giorgio Grisetti and Cyrill Stachniss, ECMR 2007 Tutorial

