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1 Introduction

Consider a system having a state θk at time step k which is observed by some process generating
an observation zk. The state transition and observation equations can be written as follows:

θk = f (θk−1,wk)

zk = g (θk,vk)

where wk and vk are system and observation noise respectively. Given a set of observations
D = {z1, z2, . . . , zk}, we wish to determine p(θk|Dk), the distribution over the state at the
current time. Using Bayes rule we can write the following:

p(θk|Dk) = p(θk|zk,Dk−1) (1)

∝ p(zk|θk)p(θk|Dk−1) (2)

Also, given the Markov structure of the problem, we have:

p(θk,θk−1|Dk−1) = p(θk|θk−1)p(θk−1|Dk−1) (3)

From Eqs. (2) and (3) we can derive the following recursive state estimaton equations:

p(θk|Dk−1) =

∫
p(θk|θk−1)p(θk−1|Dk−1)dθk−1

}
Prediction (4)

p(θk|Dk) = ckp(zk|θk)p(θk|Dk−1)

ck =

∫
p(zk|θk)p(θk|Dk−1)



 Filter update (5)

In general these equations are difficult to evaluate. For special cases of state transition and ob-
servation functions, and noise distributions however, these equations become exactly solvable.

∗This derivation is pretty detailed, and might have a typo or two. If you find any, please let me know!
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Figure 1: Generic system diagram.

2 Linear-Gaussian state space model

The Kalman filter [1] essentially solves the prediction and filter update equations for the special
case in which the system transition and observation functions are linear in the state and noise,
and the noise is Gaussian. In this case since the noise is Gaussian, the integrals are analytically
tractable, and the linearity of the transition and observation functions ensure that the state
and observation distributions retain their Gaussian form at each step. We can write the state
transition and observation equations as follows:

θk = Fθk−1 + Φwk (6)

zk = Gθk + Ψvk (7)

where we assume wk ∼ N (wk; 0,Q), wk ∼ N (vk; 0,R). We define the following statistics for
the prior and posterior distributions:

ak|k−1 = 〈θk|Dk−1〉
Pk|k−1 = Cov(θk|Dk−1)

}
Prior mean and covariance

ak = 〈θk|Dk〉
Pk = Cov(θk|Dk)

}
Posterior mean and covariance

From Eqs. (6) and (7) we can also infer the following:

θk|θk−1 ∼ N
(
θk; Fθk−1,ΦQΦT

)

zk|θk ∼ N
(
zk; Gθk,ΨRΨT

)
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2.1 Prediction

Eq. (4) allows us to create a prior distribution of the current state θk with only knowledge of
past observations Dk−1. The reason this is a prior distribution is because we have yet to make
an observation zk in this state. Once we make the observation, we will need to integrate it
with this distribution to generate a posterior distribution.

p(θk|Dk−1) =

∫
p(θk|θk−1)p(θk−1|Dk−1)dθk−1 (8)

=

∫
N
(
θk; Fθk−1,ΦQΦT

)
N (θk−1; ak−1,Pk−1) dθk−1 (9)

= k

∫
exp

{
−1

2
A

}
dθk−1 (10)

The term A inside the exponent can be expanded as follows:

A = (θk − Fθk−1)
T
(
ΦQΦT

)−1

(θk − Fθk−1) + (θk−1 − ak−1)
T
P−1
k−1 (θk−1 − ak−1)

= θk−1
T

(
FT
(
ΦQΦT

)−1

F + P−1
k−1

)

︸ ︷︷ ︸
B

θk−1 − 2θTk−1

(
FT
(
ΦQΦT

)−1

θk + P−1
k−1ak−1

)

︸ ︷︷ ︸
C

+ θk
T
(
ΦQΦT

)−1

θk + ak−1
TP−1

k−1ak−1

This is a quadratic in θk−1, which can be written as

A = (θk−1 − µ)
T
Σ−1 (θk−1 − µ)−CTBC + θk

T
(
ΦQΦT

)−1

θk + ak−1
TP−1

k−1ak−1

where Σ = B−1 and µ = ΣC. Substituting this result back into the exponent of Eq. (10) we
get:

p(θk|Dk−1) = k

∫
exp

{
−1

2
A

}
dθk−1

= k exp

{
−1

2

[
θk

T
(
ΦQΦT

)−1

θk + ak−1
TP−1

k−1ak−1 −CTBC

]}

·
∫

exp

{
−1

2
(θk−1 − µ)

T
Σ−1 (θk−1 − µ)

}
dθk−1

= k (2π)
d/2 |Σ|1/2 exp




−1

2

[
θk

T
(
ΦQΦT

)−1

θk + ak−1
TP−1

k−1ak−1 −CTBC

]

︸ ︷︷ ︸
D





This distribution has a quadratic inside an exponential term implying that p(θk|Dk−1) has a
Gaussian form. We can expand the quadratic term D as follows:
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D = −
(

FT
(
ΦQΦT

)−1

θk + P−1
k−1ak−1

)T (
FT
(
ΦQΦT

)−1

F + P−1
k−1

)−1(
FT
(
ΦQΦT

)−1

θk + P−1
k−1ak−1

)

+ θk
T
(
ΦQΦT

)−1

θk + ak−1
TP−1

k−1ak−1

Consider terms in D that are quadratic in θk:

D2 = θk
T
(
ΦQΦT

)−1

θk − θkT
(
ΦQΦT

)−1

F

(
FT
(
ΦQΦT

)−1

F + P−1
k−1

)−1

FT
(
ΦQΦT

)−1

θk

= θk
T

[(
ΦQΦT

)−1

−
(
ΦQΦT

)−1

F

(
FT
(
ΦQΦT

)−1

F + P−1
k−1

)−1

FT
(
ΦQΦT

)−1
]
θk

= θk
T
(
FPk−1F

T + ΦQΦT
)−1

θk

Since this is the only term in D that is quadratic in θk, we can infer the covariance of the
distribution as follows:

⇒ Pk|k−1 = FPk−1F
T + ΦQΦT

Consider terms in D that are linear in θk

D1 = −2θk

(
ΦQΦT

)−1

F

(
FT
(
ΦQΦT

)−1

F + P−1
k−1

)−1

P−1
k−1ak−1

= −2θk

(
ΦQΦT

)−1

F

[
Pk−1 −Pk−1F

T
(
ΦQΦT + FPk−1F

T
)−1

FPk−1

]
P−1
k−1ak−1

= −2θk

(
ΦQΦT

)−1
[
F− FPk−1F

T
(
ΦQΦT + FPk−1F

T
)−1

F

]
ak−1

= −2θk

(
ΦQΦT

)−1




F− FPk−1F
T
(
ΦQΦT + FPk−1F

T
)−1

F

−ΦQΦT
(
ΦQΦT + FPk−1F

T
)−1

F

+ΦQΦT
(
ΦQΦT + FPk−1F

T
)−1

F




ak−1

= −2θk

(
ΦQΦT + FPk−1F

T
)−1

Fak−1

= −2θkP
−1
k|k−1Fak−1

⇒ ak|k−1 = Fak−1

Hence, the prior distribution p(θk|Dk−1) is Gaussian, with mean and variance given by:

ak|k−1 = Fak−1 (11)

Pk|k−1 = FPk−1F
T + ΦQΦT (12)
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2.2 Filter Update

p(θk|Dk) ∝ p(zk|θk)p(θk|Dk−1)

∝ exp




−1

2

[
(zk −Gθk)

T
(
ΨRΨT

)−1

(zk −Gθk) +
(
θk − ak|k−1

)T
P−1
k|k−1

(
θk − ak|k−1

)]

︸ ︷︷ ︸
E





Now:

E = (zk −Gθk)
T
(
ΨRΨT

)−1

(zk −Gθk) +
(
θk − ak|k−1

)T
P−1
k|k−1

(
θk − ak|k−1

)

= θk
T

(
GT

(
ΨRΨT

)−1

G + P−1
k|k−1

)
θk − 2θTk

(
GT

(
ΨRΨT

)−1

zk + P−1
k|k−1ak|k−1

)
+ k

From which we can deduce:

Pk =

(
GT

(
ΨRΨT

)−1

G + P−1
k|k−1

)−1

= Pk|k−1 −Pk|k−1G
T
(
ΨRΨT + GTPk|k−1G

)−1

GPk|k−1

= Pk|k−1 −Pk|k−1G
TK−1GPk|k−1 where K = ΨRΨT + GTPk|k−1G

Also

ak = Pk

(
GT

(
ΨRΨT

)−1

zk + P−1
k|k−1ak|k−1

)

=
(
Pk|k−1 −Pk|k−1G

TK−1GPk|k−1

)(
GT

(
ΨRΨT

)−1

zk + P−1
k|k−1ak|k−1

)

= ak|k−1 −Pk|k−1G
TK−1Gak|k−1 + Pk|k−1G

T
[
I−K−1GPk|k−1G

T
]

︸ ︷︷ ︸
F

(
ΨRΨT

)−1

zk

Now:

F = I−K−1GPk|k−1G
T

= I−K−1GPk|k−1G
T −K−1ΨRΨT + K−1ΨRΨT

= K−1ΨRΨT

Hence
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ak = ak|k−1 + Pk|k−1G
TK−1

(
zk −Gak|k−1

)

This allows us to characterize the posterior distribution p(θk|Dk) as a Gaussian with the
following mean and variance:

ak = ak|k−1 + Pk|k−1G
TK−1

(
zk −Gak|k−1

)

Pk = Pk|k−1 −Pk|k−1G
TK−1GPk|k−1

where

K = ΨRΨT + GTPk|k−1G
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