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Recall: Estimation

Last time, we looked at the following:

 Estimation of “true state” from noisy measurements

 We assumed a sensor model (y = Hx + w) where the 

state is linearly transformed and corrupted with noise

 Then, we looked at a variety of estimation procedures

 Least squares

 Weighted least squares

 Recursive formulation of WLS

 Maximum likelihood estimation

 Nonlinear sensor model (i.e., y = h(x) + w), which resulted in the 

ideas of Monte Carlo methods and Unscented estimation
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Agenda for this lecture

 Recap of the basic multiple observations scenario

 Introduction of dynamics

 The Kalman filter algorithm

 Discrete time, linear dynamics

 Continuous time, linear dynamics

 Extensions for nonlinear dynamics

 Multiple-model estimation
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Simple Estimation Problem

 Consider a ship in choppy waters

 Needs to navigate using a distant landmark (star)

 Can make multiple measurements of the same ground 

truth (anticipating the rest of the lecture, let us say –

successively in time)

 We know (a priori) one crucial fact – the variance of each 

measurement

 Then, what is the true value of the 

distance to the landmark?
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Updating Estimated State 

How to combine multiple measurements?
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Answer: Variance-weighted Sum
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In pictures…
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What happens if we Add Dynamics?
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Effect of Adding System Dynamics

The uncertainty is amplified –

density function gets “squashed”
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Idea of the “Kalman Filter”
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Key Variables: First Two Statistical Moments
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Discrete Kalman Filter: Key Ingredients

 Discrete process model

 State change over time

 Linear difference equation

 Discrete measurement model

 Relationship between state and measurement

 Linear function (this is what we dealt with in last lecture!)

 Model parameters

 Process noise characteristics

 Measurement noise characteristics
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Discrete Kalman Filter: Two Models
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Discrete Kalman Filter: Model Equations
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Complete Model Specification
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How the Filter Works

 Time Update or 

Prediction (a priori

estimates) - Project state 

and covariance forward in 

time

 Measurement Update or 

Correction (a posteriori

estimates) - Update 

variables based on a 

noise measurement
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Discrete Kalman Filter – In Equations
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Discrete Kalman Filter: The Complete Loop
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Example: Estimating a (Noisy) Constant
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Recap: What is the Kalman Filter?

 An optimal, recursive data processing algorithm

 Optimal in what sense?

 If the system dynamics are linear

 And system/sensor noise is Gaussian and white

 Then, there is no alternate algorithm with lower MSE

 Therefore, Optimal  Best Linear Unbiased Estimator

 Bayesian View of the Kalman Filter:

It propagates the conditional probability density of the 

desired quantities, conditioned on the knowledge of the 

actual sensor data
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Kalman Filter: Continuous Time-variant case
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Dealing with Nonlinearities
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Extended Kalman Filter - Setup
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Extended Kalman Filter - Computation

 Notice that the above equations look a lot like the linear 

system dynamics and measurement equations

 So, we can define a Kalman filter over this error

 And then, use that linear error estimate to drive the main 

estimation loop
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Extended Kalman Filter: The Loop
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Limitations of the EKF

 If the initial state estimate is wrong, or if the process is 

incorrectly modeled, the filter may quickly diverge (due to 

linearization)

 Covariance estimate is an underestimate of the true 

matrix - risks becoming inconsistent in a statistical sense 

without the addition of "stabilizing noise“

 Computational complexity associated with 

Jacobian/Hessian calculation – can be an issue in high-

dimensional setting

February 26, 2008 Kalman Filtering 26



Unscented Kalman Filter: Basic Idea
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Multiple Model Filters
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Interesting Recent Hypothesis
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Reference:

S. Thrun et al., Probabilistic Robotics, MIT Press, 2005.

Several pictures and equations in this presentation are 

taken from the tutorial by Welch and Bishop 

(http://www.cs.unc.edu/~welch/kalman/)
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