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Recall: Estitmation

Last time, we looked at the following:
Estimation of “true state” from noisy measurements

We assumed a sensor model (y = Hx + w) where the
state is linearly transformed and corrupted with noise

Then, we looked at a variety of estimation procedures

Q
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Least squares

Weighted least squares
Recursive formulation of WLS
Maximum likelihood estimation

Nonlinear sensor model (i.e., y = h(x) + w), which resulted in the
ideas of Monte Carlo methods and Unscented estimation
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Agenda for this lecture

Recap of the basic multiple observations scenario
Introduction of dynamics

The Kalman filter algorithm

o Discrete time, linear dynamics

o Continuous time, linear dynamics
o Extensions for nonlinear dynamics
o Multiple-model estimation
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Simple Estimation Problem

= Consider a ship in choppy waters
= Needs to navigate using a distant landmark (star)

= Can make multiple measurements of the same ground
truth (anticipating the rest of the lecture, let us say —
successively in time)

= We know (a priori) one crucial fact — the variance of each
measurement

= Then, what is the true value of the
distance to the landmark?
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Updating Estimated State

How to combine multiple measurements?

Estimate 1:

Given measurements z, crg .
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Answer: Variance-weighted Sum

Given measurements z, 0>, and zo, 07,
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The resulting variance 1s simply combined as,
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In pictures...
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Conditional density of position based on data z; and z, .
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What happens if we Add Dynamics?
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Effect of Adding System Dynamics

prix)
The uncertainty is amplified —
density function gets “squashed” AL\
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Propagation of conditional probability density.
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‘ Idea of the “Kalman Filter”

Controls
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Optimal estimate
of system state
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Key Variables: First Two Statistical Moments

process state (mean)

P

X error covariance
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Discrete Kalman Filter: Key Ingredients

Discrete process model
o State change over time
o Linear difference equation

Discrete measurement model
o Relationship between state and measurement
o Linear function (this is what we dealt with in last lecture!)

Model parameters
o Process noise characteristics
o Measurement noise characteristics
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‘ Discrete Kalman Filter: Two Models

Ai‘ dynamic
model

previous state next state

image plane

measurement
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Discrete Kalman Filter: Model Equations

System Dynamics:
L1 = Awp + wi, xp € R, wi, ~ N(0, Q)
where A 1s the ‘state transition matrix .

Measurement Process:

2. = Hup 4+ v, 2 € R'™, v ~ JV*(O_, B)
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Complete Model Specification

System Dynamics:

Lyl = fl;Uk + wp, X € SRH, Wi ~ J\F(Or Q)

where A is the ’state transition matrix’.

Measurement Process:

2. = Hup + v, 2z € R, vp, ~ N*(O_, H)

X, . a priori state estimate.

I a posteriori state estimate.

P = E|(xy — &), )(wr — 2, )']. the a priori estimate error covariance

P = E[(x) — &) (x) — &y)'] the a posteriori estimate error covariance
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How the Filter Works

= Time Update or
Prediction (a priori
estimates) - Project state

and covariance forward in

. error covar lance
time

@ =Sip!

= Measurement Update or
Correction (a posteriori
estimates) - Update
variables based on a
noise measurement
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Discrete Kalman Filter — In Equations

Prediction step:

iﬁ_:—l—l = AI;{
Pr, =APA+Q

Correction step:
TR = I —I—K;f[zk — HIE]
P = [I—KkH}Pk_

where K}, = P, H'(HP_ H' + R)™' is the Kalman Gain.
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Discrete Kalman Filter: The Complete Loop

Measurement Update (*Correct™)

Time Update (“Predict™) ,
P (1) Compute the Kalman gain

(1) Project the state ahead T “ 1T
et e st K, = P.HT(HP _HT +R)
X, = AXx,_ | +Bu,

(2) Update estimate with measurement 7,

(2) Project the error covariance ahead :iﬂa':: — j}; + KA-(ZA- _ Hj};)
PR’ = AP;{ 1 AT + 0 (3) Update the error covariance

P, = (I-K,H)P,

[nitial estimates for X, _, and Pk— |
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“xample: Estimating a (Noisy) Constant

Lkl = L
Zp = X + U

Time Update: +
2T = ~0.2 + +
I, = Ik
_ _ + + +
P =D v ~0-3F T+ + +
k1 G E oL Tt 4 + +
= Pa QM
. -
Kalman Gain: _0.4")\/ ++ + + + 4 +
+
_ + + +
- P, + T ++
— k ++
Ky = =53 0.5t + +
k 1 1 + -l- Il 1
Measurement Update: 10 20 30 10 >0
Iteration

rp = EE + f{k(;k — Ek_)

P = (1 — Ifk)Pk_
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Recap: What is the Kalman Filter?

An optimal, recursive data processing algorithm

Optimal in what sense?

o If the system dynamics are linear

o And system/sensor noise is Gaussian and white

o Then, there is no alternate algorithm with lower MSE

o Therefore, Optimal <> Best Linear Unbiased Estimator

Bayesian View of the Kalman Filter:

It propagates the conditional probability density of the
desired quantities, conditioned on the knowledge of the
actual sensor data
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Kalman Filter: Continuous Time-variant case

System and Sensor Dynamics:

Initial Conditions:
Elx(0)] = xg, Elz(0) — 2g][x(0) — 2] = Fo
The discrete time optimal gain matrix and covariance update equation are:

Ki—1= Pt Hy R (1)t
Pry=(1—-Kr1Hi )P,

As 0t — 0, the evolution of covariance is described by a matrix Riccati equation,

P = F(t)P(t)+ P(t)F'(t) + L()Qc(t)L' (t) — P()H'(t) R (1) H (1) P(t)
From this, the continuous time Kalman gain is derived as,

Ke(t) = P()H'(t) R (1)

February 26, 2008

Kalman Filtering

21



Dealing with Nonlinearities
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Extended Kalman Filter - Setup

We have the nonlinear system,
ry = f(Trp—1, up, wp_1)
2k = hi{xg, v)

Consider the a posteriori noise-free approximation,
Ty = f(ogp_1,us,0)
Zr = h(xg, 0)

This then yields the linearization,
wp ~ Ty + Alrg_y — Tp—1) + Wwp_y
2 A 2+ H(;l‘-k — ’f‘k) + Vg

where A g} the Jacobian matrix,
IO _

and similarly for W, H, V" with respect to w, x, v respectively.
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Extended Kalman Filter - Computation

(Given the linearization,
wp o+ Alrg—y — Tp—1) + Wwg_y
zp &z + H(rvp — a) + Vg

we define prediction error and measurement residual as,
f-l_]'_;\ f— Ill[\ - ‘!:'i —1( {'II{C_]_ e '.‘Ib.l{-.’—]_) + f.:,Ig
t-.lz = E '." r'it' "."IIL' 'h"r HE -1‘_1\- _|_ ?L{C

where €}, 7, are O-mean random variables with covariance W QW and V RV,

Notice that the above equations look a lot like the linear
system dynamics and measurement equations

So, we can define a Kalman filter over this error
And then, use that linear error estimate to drive the main
estimation loop
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Extended Kalman Filter: The Loop

Measurement Update (“*Correct™)

Time Update (“Predict™ ;
P : ) (1) Compute the Kalman gain

(1) Project the state ahead _ p T - 11T e -1
e ; K, = PHI(H P HT +V R V])
X}\- - f(xk_ ]2 HA—& )

(2) Update estimate with measurement z;
-l e S . i v i ~ a7 A‘_
(2) Project the error covariance ahead X, =%, i KA( 2 — h(,\ o 0 ))

P, = AP,

F1 AE + Wﬁ: Qﬁ: 1 uff (3) Update the error covariance

P, = (I-K,H,)P;

k

[nitial estimates for x;, _; and Pk 1
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Iimitations of the EKT

If the initial state estimate is wrong, or if the process is
incorrectly modeled, the filter may quickly diverge (due to
linearization)

Covariance estimate is an underestimate of the true
matrix - risks becoming inconsistent in a statistical sense
without the addition of "stabilizing noise”

Computational complexity associated with
Jacobian/Hessian calculation — can be an issue in high-
dimensional setting
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Unscented Kalman Filter: Basic Idea

Actual (sampling) Linearized (EKF) uT

sigma pmr‘lts

' '_' -,-'-\.'l .-
- covariance \w

mean

|
= f(x) = f(,:w)

weighted sampl e mean
and covariance

transfcrmed
mgma points

UT mean
uT Govananoe
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Multiple Model Filters

Measurement
z
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‘ Interesting Recent Hypothests
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Abstract

The cerebellum evolved in association with the electric sense and vestibular sense of the
carliest vertebrates. Accurate information provided by these sensory systems would have been
essential for precise control of orienting behavior in predation. A simple model shows that
individual spikes in electrosensory primary afferent neurons can be interpreted as
measurements of prey location. Using this result, [ construct a computational neural model in
which the spatial distribution of spikes in a secondary electrosensory map forms a Monte
Carlo approximation to the Bayesian posterior distribution of prey locations given the sense
data. The neural circuit that emerges naturally to perform this task resembles the
cerebellar-like hindbrain electrosensory filtering circuitry of sharks and other electrosensory
vertebrates. The optimal filtering mechanism can be extended to handle dynamical targets
observed from a dynamical platform; that is, to construct an optimal dynamical state estimator
using spiking neurons. This may provide a generic model of cerebellar computation.
Vertebrate motion-sensing neurons have specific fractional-order dynamical characteristics
that allow Bayesian state estimators to be implemented elegantly and efficiently, using simple
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Reference:
S. Thrun et al., Probabilistic Robotics, MIT Press, 2005.

Several pictures and equations in this presentation are
taken from the tutorial by Welch and Bishop
(http://www.cs.unc.edu/~welch/kalman/)
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