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Recap: State Estimation using Kalman Filter

 Project state and error 

covariance forward in time:

 Update estimate after measurement:
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e.g., during a time interval, you

expect the ball to go from 1m to 1.5 m,
with some uncertainty increase 

In fact, vision sees ball going to 1.7 m

so you update your estimates to

Conclude ball must be at 1.6 m with 
some new level of uncertainty



Recap: State Estimation using Kalman Filter

 Project state and error 

covariance forward in time:

 Update estimate after measurement:
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Limitations of the Kalman Filter

 Optimal state estimator for linear systems & Gaussian noise

 Most robots involve nonlinear dynamics (simple example: stick-

slip friction and slippage of the tires)

 Many commonly used sensors, e.g., sonar, involve more complex 

types of noise

 In complex scenarios (e.g., estimating positions of obstacles in a 

room), one is dealing with multi-modal distributions

 Standard extensions for nonlinearity work poorly:

 If the initial state estimate is wrong, or if process is incorrectly 

modeled, the filter may quickly diverge

 Covariance is underestimated
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Particle Filter

Represent probability distribution as a set of discrete 

particles which occupy the state space – efficient for non-

Gaussian distributions

Particle = state hypothesis

Distribution = set of state 

hypotheses
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Sample Based Posterior Probabilities
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e.g., distance could be 4, 5 or 6 m 
– each value is a hypothesis.

But, it is much more likely that 

the true value is 6 m, and not 4 m.

True measurement is estimated as weighted average of all hypotheses.



Approximating the Posterior
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Drawing Samples from a Distribution: 

Rejection Sampling
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Better Idea: Importance Sampling
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From Sampling to the Particle Filter

 Posterior distribution  set of sample hypotheses

 Filter update (i.e., state estimate) based on actual 

actions and observations by the robot

 The particle filter algorithms involves three steps:

1. Sampling particles from a proposal distribution
 (This is like the ‘prediction’ step in KF)

2. Computing the particle weight (importance sampling)
 (This is like the ‘correction’ step in KF)

3. Resampling – an additional correction step
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Particle Filter Update Cycle
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What are possible values
for estimated state 
(given past state/control)?

Which states are more 
likely given sensor
observation?

Distribution needs to be
adjusted for consistency



Particle Filter – Advantages/Disadvantages
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multi-modal distributions
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Number of particles grows 

exponentially with the 

dimensionality of the state 

space

1-dim  n particles

2-dim  n2 particles

m-dim  nm particles



What is SLAM?

Consider the following scenario:

 Your robot is called upon to exploring below the ice sheet in a 

lake in Antarctica

 You do not have a map of the terrain

 You may sense your current position using a combination of 

vision and sonar – both are very noisy in such conditions

 Your robot needs to do two things at once:

 Explore the terrain and draw a map

 Use its measurements to locate itself within this map

…chicken and egg problem!
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The SLAM Problem
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Let’s first think about one piece…



Problem: Location Estimation, given a map

Simple question: Where are you (within the given map)?

 Instead of a single hypothesis about location, maintain 

probability distribution over hypotheses

 Use estimation algorithm to improve knowledge given 

sequence of measurements 

 Density function can have arbitrary form (e.g., multiple 

modes) – so, use algorithms like particle filters

But first, a naïve question: if you have a map and a stream 

of measurements, couldn’t you just trace your path?
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View through the robot’s “eyes”…
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Source: http://www.cs.washington.edu/ai/Mobile_Robotics/



Problem with Dead Reackoning

 Simply integrating robot velocity commands from a 

known starting point gets the robot hopelessly lost

 Same thing if you integrate on-board odometry (position)
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Probabilistic Localization: Basic Idea

 Robot in 1-dim world

 Initially, it is lost: uniform 

distribution

 Queries sensor to find it is 

near a door: increase 

probability near doors

 Multimodal distribution, need 

more information

 Robot moves, to door #2

 Move increases uncertainty, 

squashes state distribution

 Robot queries sensor again 

and localizes itself!
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Some Remarks on Localization

 If the doors were uniquely identifiable then the problem 

is merely that of sensor noise – use a Kalman filter

 In fact, robot can not be sure which door it has sensed –

this is the data association problem

 Beliefs are inherently multimodal due to ambiguities

 The benefit of the probabilistic approach lies in the ability 

to explicitly represent and reason about this ambiguity

 Localization involves two major issues:
1. Representing the belief P(x) (where could I possibly be?)

2. Computing conditional probabilities (where could I be, given what I see?)
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How to represent map (configuration space)?

There are a number of choices and they determine how 

we deal with the computation. Two examples:

 Simple – use a grid

 Landmark based methods:

e.g., landmark derived from 

structures like Voronoi graphs
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Probabilistic Localization (Recursive Filtering)
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Probability of state,

given past history

Motion model: Probability of current state,

given previous state and action

Sensor Model: Probability of current 

Observation given current state



Localization – procedurally…

 When you get odometry reading u(k-1), prediction step:

 Then, when you get a measurement y(k), update step:
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Note: All discrete sums may be replaced by integrals.



The Mapping Problem 
(structure of the environment)

 Based on a trace of observations, can we build a map?

 Robot must cope with two forms of uncertainty: noise in 

perception (y) and noise in odometry (u).

 Assume ‘localization is solved’ – robot knows where it is

 A simple way to build a map: 

Occupancy grid - Each cell in a 

2-dim grid m stores the probability 

that it is occupied

20 November 2008 PF & SLAM 23



Occupancy Grids

 Impose grid on space to be mapped

 Identify an inverse sensor model

p(mx | yt)

 Update odds that grid cells are occupied
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Simultaneous Localization and Mapping

Major approaches:

 Historical: Given a set of landmarks (e.g., I know goal posts in a 

stadium), use Kalman Filter type algorithms to estimate joint 

posterior probability over maps and robot locations

 Global optimization: Consider locations as random variables and 

derive constraints between locations using overlapping 

measurements (parameter optimization to minimize error)

 Neither one good for truly on-line applications, so many variations 

based on Bayesian statistics have been developed.
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Bayesian SLAM: 

Posterior Probability of Map and Location
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Sensor model: Given where I am in a
map, what could I expect to see?

Motion model: Given what I just did 
and where I have just been, where am I?

Map Refinement: Given everything I’ve done and seen so far,
what is my best guess of the map and my place in it?



Graphical Model for Probabilistic SLAM
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Each node represents variable to be estimated

and each arrow represents conditional dependence.

(Note: observations are denoted z instead of y)



Demo (using FastSLAM Algorithm)

20 November 2008 PF & SLAM 28

Source: http://www.cs.washington.edu/ai/Mobile_Robotics/
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