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Motivation

Consider the following simple problem:

 You have been gifted a couple of AIBOs

 You want to give them the ability to observe the world, 

objects and each other through vision

 Basically, you want accurate estimates of distances and 

object locations

 What will you do?

 Concretely, here are two examples of vision data:

Clip 1

Clip 2
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http://www.youtube.com/watch?v=7HQTcOvj00o&feature=related
http://www.youtube.com/watch?v=so9axknlftk


Several Information Needs

Know thyself – where is 

the body/sensor? Know thy environment
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Sensors must deal with…

 Ambient light changes

 Colour of various targets

 Orientation of various surfaces

 Scale effects (e.g., how much of the object is in a pixel?) 

and how does that change with movement?

Two major techniques:

Estimation – extracting a “true” model from noise

Sensor Fusion – combining “information” coming from 

multiple sensory modalities
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What are we Fusing? An Example.
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J. Vision, Vol7(7), Article 5, pp. 1-24



Estimation: Basic Question

Techniques to deal with a number of scenarios:

 Scalar of vector parameters

 Linear/nonlinear, Gaussian noise/other distributions

 Repeated measurements from same setup or more 

variation in experimental conditions
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Estimation – An Essential Tradeoff
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Properties of an Estimator
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Batchwise Least Squares Method
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Batchwise Weighted Least Squares
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Mean and Variance for Simulated Data
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Properties of Least Squares Estimators
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Recap, so far.

Estimation lets you

 take data from a noisy sensor

 and, subject to assumptions on noise and system model,

 infer the “true” value of the underlying parameters

You can do this for different sensors

And different sensory modalities

As long as they measure the same thing, you can write 

their measurements in terms of mean and covariance
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Data Fusion

How do you combine two unbiased estimates with 

arbitrary covariance matrices?
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Fusion in terms of “Information”
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De-Fusion
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Sequential Computation of LS Estimates

The least squares loss function can be defined recursively:

Then, the estimates can be computed recursively:
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Maximum Likelihood Estimation
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Marginalization
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Dealing with Nonlinearities

Consider a toy example: range and bearings sensor.

How does the noise in what you sense translate into a different 

coordinate system?
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Estimation by Analytical Approximation
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Monte Carlo Estimation
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Estimation using an Unscented Transform
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Concluding Thoughts

How might the human brain do/use this?
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Bayesian decoding
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… and then the paper goes on to show that humans can

reliably compute using such codes (e.g., in cue integration).

The takeaway point is that if properly handles, many channels

of uncertain data can be yield pretty good results. 



Upcoming…

 This lecture only dealt with compensating sensor noise 

and combining the resulting estimates

 What happens when we want to take dynamics into 

account?

 Kalman Filtering – linear theory that extends the 

recursive update calculations mentioned here

 Nonlinear versions – Extended/unscented Kalman 

filters, Particle filters, etc.

 What happens when you don’t have landmarks to work 

with?

 Simultaneous Localization and Mapping (SLAM)
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Upcoming…
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