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Motivation

Consider the following simple problem:
You have been gifted a couple of AIBOs

You want to give them the ability to observe the world,
objects and each other through vision

Basically, you want accurate estimates of distances and
object locations

What will you do?

Concretely, here are two examples of vision data:
Clip 1
Clip 2
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http://www.youtube.com/watch?v=7HQTcOvj00o&feature=related
http://www.youtube.com/watch?v=so9axknlftk

Several Information Needs

Know thyself — where is
the body/sensor? Know thy environment
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Sensors must deal with...

Ambient light changes
Colour of various targets
Orientation of various surfaces

Scale effects (e.g., how much of the object is in a pixel?)
and how does that change with movement?

Two major techniques:
Estimation — extracting a “true” model from noise

Sensor Fusion — combining “information” coming from
multiple sensory modalities
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What are we Fusing? An Example.
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Estimation: Basic Question

Given,
e asensormodel,y = Hx+ e
e N sensorreadings iny, generated by y,, = Hyx + e k=12, ..., N

Find the true parameters.

Techniques to deal with a number of scenarios:
Scalar of vector parameters
Linear/nonlinear, Gaussian noise/other distributions

Repeated measurements from same setup or more
variation in experimental conditions
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Estimation — An Essential Tradeoff

Consider an observation y that depends on parameter ¢
through a model given by conditional probabiliry density function(likelihood), p(y|@).
We want an estimator 6 = a(y)
If the true parameter value is #, we can define mean squared error,
MSE(6) = E[(6y — 0)?]
E[(6 — E[6))*] + (60 — E[F])°
where the first term is the variance and the second term is the bias.

We have to make tradeoffs! So, we define some properties to consider ...
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Properties of an Estimator

e Unbiased if Bias(6) = 0.

e Minimum variance (MV) if 8(y) = arg min, Var (a(y)). Without con-
straints on the estimator. the MV property is useless since for instance
a(y) = 0 gives Var (a(y)) = 0.

o Minimum variance unbiased (MVU) principle constrains the estimator
to the class of unbiased ones.

e Best linear unbiased estimator (BLUE) constrains the estimator to be
unbiased and the linear functions @ = a(y) = Ly that minimimes the

MSE.
e Consistent, if Bias() — 0 and Var(f) — 0 as N — oc.

e Efficient, it Bias(f) = 0 and Var(d) — CRLB as N — oo, where CRLB
denotes the Cramér-Rao lower bound
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Batchwise Least Squares Method

The least squares (LS) estimate is defined as

J.Nr

5 = arg 11211 Z(yk — Hyx) (y, — Hpz) = arg 11211(}? —H) (y — Ha).
k=1

Direct differentiation and setting the result to zero gives the estimate

+L5 — (aTH) 'HTy
-1 N

N
= (ZH{H;) ZHEH.&-
k=1 k=1
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Batchwise Weighted Least Squares

If Cov(ep) = R and R = diag(R1, ..., Ry), then the weighted least squares
estimate (WLS) is defined as

N
aWES — arg min E (v — H;‘._:J::]TREI (yp — Hpx) = arg min(y — Haz) 'R}y — Ha).
xr xr
k=1

with the solution

-1
._}*.,'[-'VLS _ HTR—IH HTR_l}"
N
In In
-1
N N
-1 -1
= | Y HIRH| > HER'm
i = )
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Mean and Variance for Simulated Data

If the data are really generated by the model for some x°,
y =Hz?+e, Cov(e)=R,
we have
GWLS _ oy (HTR_IH)_lHTR_Ie,
#LS — g0 4 (HTH) "H e

and get the properties

R(:WLS) = 4o
R(:LS) = 2°,
Cov (W) = (HTR_lH)_1 £ pWLS,
Cov(iLS) = (HTH) ' (HTRH) (HTH) ' £ pLS
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Properties of Least Squares Estimators

( ~WLS

)
E(2")
)

Cov(a VLS

(HTR lE) L4 pwLs

Cov(il¥) = (HTH) " (HTRH) (HTH) ' £ pLS,
WLS is BLUE for the linear problem. so we must have PV 15 < PLS which
is perhaps not obvious from the algebraic expressions.

Further. if the distribution of the noise is assumed Gaussian, the estimates
become Gaussian as well

e c JV(U_,RJ =
FWVES ¢ Nf(g0, PVES),
b5 e N(x°, PH5)

In the Gaussian case, WLS is also the minimum variance estimator.
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Recap, so far.

Estimation lets you
take data from a noisy sensor
and, subject to assumptions on noise and system model,
infer the “true” value of the underlying parameters

You can do this for different sensors
And different sensory modalities

As long as they measure the same thing, you can write
their measurements in terms of mean and covariance
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Data Fusion

How do you combine two unbiased estimates with
arbitrary covariance matrices?

E(r1) = E(19) = x,
Cov(ry) = Py,
Cov(rg) = Ps.

P=(P;t+p ),

i =P (P ey + Py tig)
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Fusion in terms of “Information”

I, = P!
T =11 +1s,
r =T YTy + Toin
fi fa

The information can thus be seen as a weighting of the estimates. The sensor
fusion formula can be extended to more than two terms by recursive applica-
tion of the formulas above.
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De-Fusion

The reverse operation of de-fusion is sometimes needed to get rid of old
immformation that is obsolete, or used multiple times to form a fused estimate.
To remove the information Zs from 77, apply

T =T — I,
=T YTy — Toig)
A
fi fa
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Sequential Computation of LS Estimates

The least squares loss function can be defined recursively:

N
Z y — Hran)! Ry My — Hyiow)
=1
R
(ye—Hpig—1) " (Hp Poot HE 4+ Ri) ™ (yr— Hidop—r)— (20—2n) T Py H(£0—dn)
k=1

Then, the estimates can be computed recursively:

. ) -1 -
ik = dp—1 + Pe_tH (HePo—r HE + Ri)™ (g — Hpdop—1).

—1
Py = Po—y — Pro1HE (HpPo1HE + Ry)” HiPr_y.
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Maximum likelthood Estitmation

The mazimum likelihood (ML) estimate is defined as

#ML = arg max p(y|x)
I

For a linear Gaussian model, the likelihood is given by

z) = 1 F_%I;T«VLS(:C).

(20N /2 T, v/ det(Ry) -

p(yl:N

That 18, the ML estimate comcides with the WLS estinate. Further, it there
1s a true value a2 of the parameters

ML _ GWLS ¢ Ar(20 P).

Note the mterpretation that the estimate is Gaussian distributed.
It is a general property of the ML estimate that it is asymptotically Gaussian
distributed

ML N(2°, P), N — .
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‘ Marginalization

Suppose the parameter vector, x = (x1,x9), consists of two parts, one with
the parameters xy of interest, and one with nuisance parameters xro. There
are two conceptually different approaches:

1. To eliminate the nuisance parameters by estimation, which leads to max-
imization of a generalized likelihood and the generalized mazximum like-

lihood estimate (GML):

PEML = arg max max p(yi.n @1, 29) = arg max p(yp.n|r1. 22(x1)).
T 9 T
2. To eliminate the nuisance parameters by marginalization, which leads to
maximization of a marginalized likelihood and the marginalized mazximum
likelihood estimate (MML):

:f:f’F"rLirL = arg max p(y1.n|r1) = arg ma.x/p(-ylﬂ.-\;zrl,mg)p(mg\ml) dro
T r1

The nuisance parameters are here considered to be stochastic with a
prior distribution p(x9|xry) that may depend on z;.
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Dealing with Nonlinearities

Consider a toy example: range and bearings sensor.

How does the noise in what you sense translate into a different
coordinate system?

= {-’ F).r — h(-i"] ,T9) + €, Landmark

) 2
r{+ I3 + €p,

p = arctan(ra/x1) + €.
inverted to
r=h"y).

ry = 1y cos(y2).

ro = 1 sin(y2).
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Estimation by Analytical Approximation

[f the inverse h™1(y) exists, compute E(z) = E(h~(y)) and Cov(z) = Cov(h™(y)):

2 _ 2,2 _
Cov(x) _ Ty T 0% [ b4 cos(2p)  sin(2p)
Jov(: 2 sin(2yp) b — cos(2y)
A _Cff -+ ?‘Zafp
_0'3 — ?‘QJ%'
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Monte Carlo Estimation

Generate a large number of samples y?) from the distribution of .

Propagate these through h~!(y) to get ().
Compute mean and covariance as follows:
e = 3 iy o

Pr= 5 S (o) = ) (0 = )
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Astimation using an Unscented Transform

The unscented transform is a general method to transform a (Gaussian) dis-
tribution using nonlinear mappings. In short, it works as follows:

1. The so called sigma points y'¥ are computed. These are the mean and
symmetric deviations around the mean computed from the covariance
matrix of .

]

The sigma points are mapped to 2% = p~1 (y(“")).

3. The mean and covariance are fitted to the mapped sigma points.

February 22, 2008 Estimation and Sensor Fusion 23



Concluding Thoughts
How might the human brain do/use this?

Bayesian inference with probabilistic population codes

Wei Ji Mal3, Jeffrey M Beck"3, Peter E Latham? & Alexandre Pouget1

Recent psychophysical experiments indicate that humans perform near-optimal Bayesian inference in a wide variety of tasks,
ranging from cue integration to decision making to motor control. This implies that neurons both represent probability
distributions and combine those distributions according to a close approximation to Bayes' rule. At first sight, it would seem that
the high variability in the responses of cortical neurons would make it difficult to implement such optimal statistical inference in
cortical circuits. We argue that, in fact, this variability implies that populations of neurons automatically represent probability
distributions over the stimulus, a type of code we call probabilistic population codes. Moreover, we demonstrate that the Poisson-
like variahility observed in cortex reduces a broad class of Bayesian inference to simple linear combinations of populations of
neural activity. These results hold for arbitrary probability distributions over the stimulus, for tuning curves of arbitrary shape and

for realistic neuronal variability.

1432 VOLUME 9 | NUMBER 11 | NOVEMBER 2006 NATURE NEUROSCIENCE
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Bayesian decoding

a
0.04
= == = Figure 1 Certainty and gain. (a) The population activity, r, on the left is the
% decoder g single trial response to a stimulus whose value was 70. All neurons were
< 0.02 assumed to have a translated copy of the same generic Gaussian tuning curve
o to s. Neurons are ranked by their preferred stimulus (that is, the stimulus
00 5 % 1:'55 ' corresponding to the peak of their tuning curve). The plot on the right shows
Preferred stimulus Stimulus the posterior probability distribution over s given r, as recovered using Bayes’
theorem (equation (1)). When the neural variability follows an independent
Poisson distribution (which is the case here), it is easy to show that
0.04 the gain, g, of the population code (its overall amplitude) is inversely
Bayesian = proportional to the variance of the posterior distribution, o<. (b) Decreasing
decodar % 0.02 the gain increases the width of the encoded distribution. Note that the
population activity in a and b have the same widths; only their amplitudes
xR ’ are different.
¢ 45 90 135 % 45 90 1%
Preferred stimulus Stimulus

... and then the paper goes on to show that humans can
reliably compute using such codes (e.g., in cue integration).
The takeaway point is that if properly handles, many channels
of uncertain data can be yield pretty good results.
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Upcoming...

This lecture only dealt with compensating sensor noise
and combining the resulting estimates

What happens when we want to take dynamics into
account?

o Kalman Filtering — linear theory that extends the
recursive update calculations mentioned here

o Nonlinear versions — Extended/unscented Kalman
filters, Particle filters, etc.

What happens when you don’t have landmarks to work
with?

o Simultaneous Localization and Mapping (SLAM)
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Upcoming...
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