1. Consider using logistic regression for a two-class classification problem in two dimensions:

\[p(y = 1|\mathbf{x}) = \sigma(w_0 + w_1 x_1 + w_2 x_2) \]

Here \(\sigma \) denotes the logistic (or sigmoid) function \(\sigma(z) = 1/(1 + \exp(-z)) \), \(y \) is the target which takes on values of 0 or 1, \(\mathbf{x} = (x_1, x_2) \) is a vector in the two-dimensional input space, and \(\mathbf{w} = (w_0, w_1, w_2) \) are the parameters of the logistic regressor.

(a) Consider a weight vector \(\mathbf{w}_A = (-1, 1, 0) \). Sketch the decision boundary in \(\mathbf{x} \) space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.

(b) Consider a second weight vector \(\mathbf{w}_B = (5, -5, 0) \). Again sketch the decision boundary in \(\mathbf{x} \) space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.

(c) Plot \(p(y = 1|\mathbf{x}) \) as a function of \(x_1 \) for both \(\mathbf{w}_A \) and \(\mathbf{w}_B \), and comment on any differences between the two.

2. Consider the logistic regression setup in the previous questions, but with the weight vector \(\mathbf{w}_A = (0, -1, 1) \). Consider the following data set: Compute the gradient of the log likelihood of the logistic regression model for this data set. Suppose that we take a single gradient step with \(\eta = 1.0 \); what is the new parameter setting? Do the new parameters do a better job of classifying the training data?

<table>
<thead>
<tr>
<th>Instance</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5</td>
<td>-0.35</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-0.1</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-1.2</td>
<td>1.0</td>
<td>+</td>
</tr>
</tbody>
</table>

It will help you to remember the following facts:

- The log-likelihood in logistic regression is
 \[
 L(\mathbf{w}) = \sum_{i=1}^{n} \log p(y = y_i | \mathbf{x}_i) \\
 = \sum_{i=1}^{n} [y_i \log p(y = 1|\mathbf{x}_i) + (1 - y_i) \log p(y = 0|\mathbf{x}_i)]
 \]

- The partial derivative of the log-likelihood with respect to a parameter \(w_j \) is
 \[
 \frac{\delta L}{\delta w_j} = \sum_{i=1}^{n} (y_i - \sigma(\mathbf{w}^\top \mathbf{x}_i))x_{ij}
 \]

- To maximize a function \(L(\mathbf{w}) \), we use the gradient ascent rule, which is
 \[
 \mathbf{w}' \leftarrow \mathbf{w} + \eta \nabla L
 \]