
IAML: Support Vector Machines II

Nigel Goddard
School of Informatics

Semester 1

1 / 25

In SMV I

We saw:

I Max margin trick
I Geometry of the margin and how to compute it
I Finding the max margin hyperplane using a constrained

optimization problem
I Max margin = Min norm

2 / 25

This Time

I Non separable data
I The kernel trick

3 / 25

The SVM optimization problem

I Last time: the max margin weights can be computed by
solving a constrained optimization problem

min
w
||w||2

s.t. yi(w>xi + w0) ≥ +1 for all i

I Many algorithms have been proposed to solve this. One of
the earliest efficient algorithms is called SMO [Platt, 1998].
This is outside the scope of the course, but it does explain
the name of the SVM method in Weka.

4 / 25

Finding the optimum

I If you go through some advanced maths (Lagrange
multipliers, etc.), it turns out that you can show something
remarkable. Optimal parameters look like

w =
∑

i

αiyixi

I Furthermore, solution is sparse. Optimal hyperplane is
determined by just a few examples: call these support
vectors

5 / 25

Why a solution of this form?

If you move the points not on the marginal hyperplanes,
solution doesn’t change - therefore those points don’t matter.

~

x
x

xxo
o

oo

o
marginw

5 / 18

6 / 25

Finding the optimum

I If you go through some advanced maths (Lagrange
multipliers, etc.), it turns out that you can show something
remarkable. Optimal parameters look like

w =
∑

i

αiyixi

I Furthermore, solution is sparse. Optimal hyperplane is
determined by just a few examples: call these support
vectors

I αi = 0 for non-support patterns
I Optimization problem to find αi has no local minima (like

logistic regression)
I Prediction on new data point x

f (x) = sign((w>x) + w0)

= sign(
n∑

i=1

αiyi(x>i x) + w0)

7 / 25

Non-separable training sets

I If data set is not linearly separable, the optimization
problem that we have given has no solution.

min
w
||w||2

s.t. yi(w>xi + w0) ≥ +1 for all i

I Why?

I Solution: Don’t require that we classify all points correctly.
Allow the algorithm to choose to ignore some of the points.

I This is obviously dangerous (why not ignore all of them?)
so we need to give it a penalty for doing so.

8 / 25

Non-separable training sets

I If data set is not linearly separable, the optimization
problem that we have given has no solution.

min
w
||w||2

s.t. yi(w>xi + w0) ≥ +1 for all i

I Why?
I Solution: Don’t require that we classify all points correctly.

Allow the algorithm to choose to ignore some of the points.
I This is obviously dangerous (why not ignore all of them?)

so we need to give it a penalty for doing so.

9 / 25

~

x
x

xxo
o

oo

o
margin

o
!

w

9 / 18

10 / 25

Slack

I Solution: Add a “slack” variable ξi ≥ 0 for each training
example.

I If the slack variable is high, we get to relax the constraint,
but we pay a price

I New optimization problem is to minimize

||w||2 + C(
n∑

i=1

ξk
i)

subject to the constraints

w>xi + w0 ≥ 1− ξi for yi = +1

w>xi + w0 ≤ −1 + ξi for yi = −1

I Usually set k = 1. C is a trade-off parameter. Large C
gives a large penalty to errors.

I Solution has same form, but support vectors also include
all where ξi 6= 0. Why? 11 / 25

Think about ridge regression again

I Our max margin + slack optimization problem is to
minimize:

||w||2 + C(
n∑

i=1

ξi)
k

subject to the constraints

w>xi + w0 ≥ 1− ξi for yi = +1

w>xi + w0 ≤ −1 + ξi for yi = −1

I This looks a even more like ridge regression than the
non-slack problem:

I C(
∑n

i=1 ξi)
k measures how well we fit the data

I ||w||2 penalizes weight vectors with a large norm
I So C can be viewed as a regularization parameters, like λ

in ridge regression or regularized logistic regression
I You’re allowed to make this tradeoff even when the data

set is separable!
12 / 25

Why you might want slack in a separable data set

x x

x

x

x
x

x

x

o
o

o

o
o

oo

o
o

o

o

x1

x2

w
x x

x

x

x
x

x

x

o
o

o

o
o

oo

o
o

o

o

x1

x2

w

ξ

13 / 25

Non-linear SVMs

I SVMs can be made nonlinear just like any other linear
algorithm we’ve seen (i.e., using a basis expansion)

I But in an SVM, the basis expansion is implemented in a
very special way, using something called a kernel

I The reason for this is that kernels can be faster to compute
with if the expanded feature space is very high dimensional
(even infinite)!

I This is a fairly advanced topic mathematically, so we will
just go through a high-level version

14 / 25

Kernel

I A kernel is in some sense an alternate “API” for specifying
to the classifier what your expanded feature space is.

I Up to now, we have always given the classifier a new set of
training vectors φ(xi) for all i , e.g., just as a list of numbers.
φ : Rd → RD

I If D is large, this will be expensive; if D is infinite, this will
be impossible

15 / 25

Non-linear SVMs

I Transform x to φ(x)

I Linear algorithm depends only on x>xi . Hence
transformed algorithm depends only on φ(x)>φ(xi)

I Use a kernel function k(xi ,xj) such that

k(xi ,xj) = φ(xi)
>φ(xj)

I (This is called the “kernel trick”, and can be used with a
wide variety of learning algorithms, not just max margin.)

16 / 25

Example of kernel

I Example 1: for 2-d input space

φ(xi) =

 x2
i,1√

2xi,1xi,2
x2

i,2

then

k(xi ,xj) = (x>i xj)
2

17 / 25

Kernels, dot products, and distance

I The Euclidean distance squared between two vectors can
be computed using dot products

d(x1,x2) = (x1 − x2)
T (x1 − x2)

= xT
1 x1 − 2xT

1 x2 + xT
2 x2

I Using a linear kernel k(x1,x2) = xT
1 x2 we can rewrite this

as
d(x1,x2) = k(x1,x1)− 2k(x1,x2) + k(x2,x2)

I Any kernel gives you an associated distance measure this
way. Think of a kernel as an indirect way of specifying
distances.

18 / 25

Support Vector Machine

I A support vector machine is a kernelized maximum
margin classifier.

I For max margin remember that we had the magic property

w =
∑

i

αiyixi

I This means we would predict the label of a test example x
as

ŷ = sign[wT x + w0] = sign[
∑

i

αiyixT
i x + w0]

I Kernelizing this we get

ŷ = sign[
∑

i

αiyik(xi ,x) + b]

19 / 25

Prediction on new example
Applications

! f(x)= sgn (+ b)

input vector x

support vectors
 x 1 ... x 4

comparison: k(x,x i), e.g.

classification

weights

k(x,x i)=exp(!||x!x i||2 / c)

k(x,x i)=tanh("(x.x i)+#)

k(x,x i)=(x.x i)d

f(x)= sgn (! $i
.k(x,x i) + b)

$1 $2 $3 $4

k k k k

Figure Credit: Bernhard Schoelkopf

13 / 18

� US Postal Service digit data (7291 examples, 16× 16
images). Three SVMs using polynomial, RBF and
MLP-type kernels were used (see Schölkopf and Smola,
Learning with Kernels, 2002 for details)

� Use almost the same (� 90%) small sets (4% of data
base) of SVs

� All systems perform well (� 4% error)
� Many other applications, e.g.

� Text categorization
� Face detection
� DNA analysis

14 / 18

Support Vector Regression

� The support vector algorithm can also be used for
regression problems

� Instead of using squared-error, the algorithm uses the
�-insensitive error

E�(z) =

� |z|− � if |z| ≥ �,
0 otherwise.

� Again a sparse solution is obtained from a QP problem

f (x) =
n�

i=1

βi k(x, xi) + w0

15 / 18

x

x

x x

x

x
xx

x

x
x

x

x

x

+!"!

x

#+!

"!
0

#

Figure Credit: Bernhard Schoelkopf

The data points within the �-insensitive region have βi = 0

16 / 18

Figure Credit: Bernhard Schoelkopf

20 / 25

feature spaceinput space

!

!

!
!

!
"

"
"

"
"

"

Figure Credit: Bernhard Schoelkopf

� Example 2

k(xi , xj) = exp−||xi − xj ||2/α2

In this case the dimension of φ is infinite
� To test a new input x

f (x) = sgn(
n�

i=1

αi yik(xi , x) + w0)

11 / 18

Figure Credit: Bernhard Schoelkopf

I Example 2

k(xi ,xj) = exp−||xi − xj ||2/α2

In this case the dimension of φ is infinite. i.e., It can be
shown that no φ that maps into a finite-dimensional space
will give you this kernel.

I We can never calculate φ(x), but the algorithm only needs
us to calculate k for different pairs of points.

21 / 25

Choosing φ, C

I There are theoretical results, but we will not cover them. (If
you want to look them up, there are actually upper bounds
on the generalization error: look for VC-dimension and
structural risk minimization.)

I However, in practice cross-validation methods are
commonly used

22 / 25

Example application

I US Postal Service digit data (7291 examples, 16× 16
images). Three SVMs using polynomial, RBF and
MLP-type kernels were used (see Schölkopf and Smola,
Learning with Kernels, 2002 for details)

I Use almost the same (' 90%) small sets (4% of data
base) of SVs

I All systems perform well (' 4% error)
I Many other applications, e.g.

I Text categorization
I Face detection
I DNA analysis

23 / 25

Comparison with linear and logistic regression

I Underlying basic idea of linear prediction is the same, but
error functions differ

I Logistic regression (non-sparse) vs SVM (“hinge loss”,
sparse solution)

I Linear regression (squared error) vs ε-insensitive error
I Linear regression and logistic regression can be

“kernelized” too

24 / 25

SVM summary

I SVMs are the combination of max-margin and the kernel
trick

I Learn linear decision boundaries (like logistic regression,
perceptrons)

I Pick hyperplane that maximizes margin
I Use slack variables to deal with non-separable data
I Optimal hyperplane can be written in terms of support

patterns
I Transform to higher-dimensional space using kernel

functions
I Good empirical results on many problems
I Appears to avoid overfitting in high dimensional spaces (cf

regularization)
I Sorry for all the maths!

25 / 25

