
IAML: Support Vector Machines I

Nigel Goddard
School of Informatics

Semester 1

1 / 18

Outline

I Separating hyperplane with maximum margin
I Non-separable training data
I Expanding the input into a high-dimensional space
I Support vector regression
I Reading: W & F sec 6.3 (maximum margin hyperplane,

nonlinear class boundaries), SVM handout. SV regression
not examinable.
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Overview

I Support vector machines are one of the most effective and
widely used classification algorithms.

I SVMs are the combination of two ideas
I Maximum margin classification
I The “kernel trick”

I SVMs are a linear classifier, like logistic regression and
perceptron
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Stuff You Need to Remember

w>x is length of the projection of x onto w (if w is a unit vector)

w

x

b

i.e., b = wT x.

(If you do not remember this, see supplementary maths notes
on course Web site.)
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Separating Hyperplane
For any linear classifier

I Training instances (xi , yi), i = 1, . . . , n. yi ∈ {−1, +1}
I Hyperplane w>x + w0 = 0
I Notice for this lecture we use −1 rather than 0 for negative class.

This will be convenient for the maths.
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A Crap Decision Boundary

Seems okay This is crap
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Idea: Maximize the Margin

The margin is the distance between the decision boundary (the
hyperplane) and the closest training point.
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Computing the Margin

I The tricky part will be to get an equation for the margin
I We’ll start by getting the distance from the origin to the

hyperplane
I i.e., We want to compute the scalar b below

w
b

wTx + w0 = 0
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Computing the Distance to Origin

w
b

wTx + w0 = 0

z

I Define z as the point on
the hyperplane closest to
the origin.

I z must be proportional to
w, because w normal to
hyperplane

I By definition of b, we have
the norm of z given by:

||z|| = b

So
b

w
||w|| = z
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Computing the Distance to Origin

I We know that (a) z on the hyperplane and (b) b w
||w|| = z.

I First (a) means wT z + w0 = 0
I Substituting we get

wT bw
||w|| + w0 = 0

bwT w
||w|| + w0 = 0

b = − w0

||w||

I Remember ||w|| =
√

wT w.
I Now we have the distance from the origin to the

hyperplane!
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Computing the Distance to Hyperplane

w

b

x

a

c

I Now we want c, the distance from x to the hyperplane.
I It’s clear that c = |b − a|, where a the length of the

projection of x onto w. Quiz: What is a?

a =
wT x
||w||
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Computing the Distance to Hyperplane
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Equation for the Margin

I The perpendicular distance from a point x to the
hyperplane wT x + w0 = 0 is

1
||w|| |w

T x + w0|

I The margin is the distance from the closest training point
to the hyperplane

min
i

1
||w|| |w

T xi + w0|
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The Scaling

I Note that (w, w0) and (cw, cw0) defines the same
hyperplane. The scale is arbitrary.

I This is because we predict class y = 1 if wT x + w0 ≥ 0.
That’s the same thing as saying cwT x + cw0 ≥ 0

I To remove this freedom, we will put a constraint on (w, w0)

min
i
|w>xi + w0| = 1

I With this constraint, the margin is always 1/||w||.
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First version of Max Margin Optimization Problem

I Here is a first version of an optimization problem to
maximize the margin (we will simplify)

max
w

1/||w||
subject to w>xi + w0 ≥ 0 for all i with yi = 1

w>xi + w0 ≤ 0 for all i with yi = −1

min
i
|w>xi + w0| = 1

I The first two constraints are too lose. It’s the same thing to
say

max
w

1/||w||
subject to w>xi + w0 ≥ 1 for all i with yi = 1

w>xi + w0 ≤ −1 for all i with yi = −1

min
i
|w>xi + w0| = 1

I Now the third constraint is redundant 15 / 18

First version of Max Margin Optimization Problem

I That means we can simplify to

max
w

1/||w||
subject to w>xi + w0 ≥ 1 for all i with yi = 1

w>xi + w0 ≤ −1 for all i with yi = −1

I Here’s a compact way to write those two constraints

max
w

1/||w||
subject to yi(w>xi + w0) ≥ 1 for all i

I Finally, note that maximizing 1/||w|| is the same thing as
minimizing ||w||2
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The SVM optimization problem

I So the SVM weights are determined by solving the
optimization problem:

min
w
||w||2

s.t. yi(w>xi + w0) ≥ +1 for all i

I Solving this will require maths that we don’t have in this
course. But I’ll show the form of the solution next time.
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Fin (Part I)
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