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Many illustrations, text, and general ideas from these slides are taken from Sam Roweis (1972-2010).
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Why Optimization

» A main idea in machine learning is to convert the learning
problem into a continuous optimization problem.

» End result: an “error function” E(w) which we want to
minimize.
» e.g., E(w) can be the negative of the log likelihood.

> E les: Li ion. lodisti . h » Consider a fixed training set; think in weight (not input)
xamples: Linear regression, logistic regression (we have space. At each setting of the weights there is some error

seen), neural networks, SVMs (we will see these later) (given the fixed training set): this defines an error surface
» One way to do this is maximum likelihood in weight space.

» Learning == descending the error surface.
» If the data are IID, the error function E is a sum of error

K(W) = Ing(Y1=X1aY2,X2= cee 7Yn7xn|W)

n
= log [ | p(y;, xi|w) function E; for each data point
i—1 B
n
= log p(y;, X;|w) B

i=1

» Example: Linear regression
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If E completely unconstrained, minimization is impossible.

All we could do is search through all possible values w.

E(w)

|
w

Key idea: If E is continuous, then measuring E(w) gives
information about E at many nearby values.
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Role of Smoothness Role of Derivatives

If we wiggle wy and keep everything else the same, does
the error get better or worse?

Calculus has an answer to exactly this question: g—vfk
So: use a differentiable cost function E and compute
partial derivatives of each parameter

The vector of partial derivatives is called the gradient of the
error. It is written VE = (%, g—vfz, . g—v’fn). Alternate
notation <.

It points in the direction of steepest error descent in weight
space.

Three crucial questions:

» How do we compute the gradient VE efficiently?
» Once we have the gradient, how do we minimize the error?
» Where will we end up in weight space?
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Optimization Algorithm Cartoon

Numerical Optimization Algorithms

» Numerical optimization algorithms try to solve the
general problem
m“i,n E(w)

» Most commonly, a numerical optimization procedure takes

two inputs:
» A procedure that computes E(w)
» A procedure that computes the partial derivative g—v‘f/

» (Aside: Some use less information, i.e., they don’t use
gradients. Some use more information, i.e., higher order
derivative. We won't go into these algorithms in the
course.)
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» Basically, numerical optimization algorithms are iterative.

They generate a sequence of points
Wo, Wy, W2, ...
E(WO)v E(W1 )7 E(Wg), -
VE(Wo), VE(W;), VE(W2), ...

» Basic optimization algorithm is

initialize w
while E(w) is unacceptably high

calculate g = VE
Compute direction d from w, E(w), g

(can use previous gradients as well...)
w—w-nd

end while
return w
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A Choice of Direction Gradient Descent

» The simplest choice d is the current gradient VE. > Simple gradient descent algorithm:
» It is locally the steepest descent direction. initialize w
» (Technically, the reason for this choice is Taylor's theorem while E(w) is unacceptably high
from calculus.) calculate g — 55
W—w-ng

end while

€O return w

» 7 is known as the step size (sometimes called learning
rate)
» We must choose n > 0.
» 7 too small — too slow
» 1 too large — instability
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Effect of Step Size Effect of Step Size
Goal: Minimize Goal: Minimize » Take n = 1.1. Not so good. If you
E — w2 5 step too far, you can leap over the
(W) =w E(w)=w . . "
» Take n = 0.1. Works well. region that contains the minimum
8 — s
| wo = 1.0 wo = 1.0
< Wy =wo —0.1-2wp =0.8 - ®7 Wy =wo—1.1-2wp = —1.2
S wo =wq —0.1-2wy =0.64 w4 wo =wq —1.1-2wy =1.44
27 w3 =Wy —0.1-2up = 0.512 2 Ws =Wo —1.1-2wp = —1.72
0~ \ \ \ \ \ \ \ 0
3 2 -1 0 1 2 3 wos = 0.0047 e Wos = 79.50

w » Finally, take » = 0.000001. What
happens here?
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“Bold Driver” Gradient Descent Batch vs online

» So far all the objective function we have seen look like:

» Simple heuristic for choosing n which you can use if you're n
desperate. E(w; D) =Y Ei(W; y;,X)).
i=1
initialize W, 1 D = {(X1,1), (X2, Y2). - (Xn, yn)} is the training set.

initialize e — E(w); g — VE(w) while n > 0
Wi <— W —rng
er = E(wy);91 = VE

» Each term sum depends on only one training instance
Example: Logistic regression: E;(w; y;, X;) = log p(y;i|X;, W).
» The gradient in this case is always

v

ife; > e
n=n/2 OF _ <~ O,
else ow = ow
=1.01p; W «— wy; ,e=e i i o ining i
end whilen W Wi g g 1 » The algorithm on slide 10 scans all the training instances
return w before changing the parameters.

» Seems dumb if we have millions of training instances.
> Finds a local minimum of E. Surely we can get a gradient that is “good enough” from
fewer instances, e.g., a couple of thousand? Or maybe

even from just one?
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Batch vs online Algorithms for Batch Gradient Descent

» Batch learning: use all patterns in training set, and update

weights after calculatin
9 9 » Here is batch gradient descent.

0E 9B initialize w
ow  — 0w while £(w) is unacceptably high
calculate g — SN | %5
» On-line learning: adapt weights after each pattern W—WwW-ng
presentation, using 25 end while

» Batch more powerful optimization methods return w
» Batch easier to analyze » This is just the algorithm we have seen before. We have
» On-line more feasible for huge or continually growing just “substituted in” the fact that £ = 3°1L, E.

datasets
» On-line may have ability to jump over local optima
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Algorithms for Online Gradient Descent Problems With Gradient Descent

» Here is (a particular type of) online gradient descent
algorithm
initialize w
while E(w) is unacceptably high

» Setting the step size n
Pick j as uniform random integerin1... N > Shallow valleys
OE;
calculate g « 7y » Highly curved error surfaces
W—W-nd .
end while » Local minima
return w

» This version is also called “stochastic gradient ascent”
because we have picked the training instance randomly.

» There are other variants of online gradient descent.
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Shallow Valleys Curved Error Surfaces

» Typical gradient descent can be fooled in several ways,
which is why more sophisticated methods are used when
possible. One problem: » A second problem with gradient descent is that the

gradient might not point towards the optimum. This is
because of curvatur

» Gradient descent goes very slowly once it hits the shallow o o
valley. » Note: gradient is the locally steepest direction. Need not

directly point toward local optimum.

» Local curvature is measured by the Hessian matrix:
d; =pd; 1+ (1 — B8)nVE(wy) Hj = 92E /ow,w;.

» One hack to deal with this is momentum

» Now you have to set both  and 5. Can be difficult and
irritating.
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Local Minima Advanced Topics That We Will Not Cover (Part 1)

» If you follow the gradient, where will you end up? Once you

hit a local minimum, gradient is 0, so you stop. _
» Some of these issues (shallow valley, curved error

N\ surfaces) can be fixed
» Some of these are second-order methods like Newton’s
method that use the second derivatives

error

| perameter space » Also there are fancy first-order methods like quasi-Newton
» Certain nice functions, such as squared error, logistic g:zﬁggf (e.g., limited memory BFGS) and conjugate
regression likelihood are convex, meaning that the second > They are the state of the art methods for logistic regression
de”vatlve IS a|W8.yS pOSItIVG ThIS Imp|IeS that any |Oca| (as |ong as there are not too many data points)
minimum is global. » We will not discuss these methods in the course.
» There is no great solution to this problem. It is a » Other issues (like local minima) cannot be easily fixed
fundamental one. Usually, the best you can do is rerun the
optimizer multiple times from different random starting
points.
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Advanced Topics That We Will Not Cover (Part Il) Summary

» Sometimes the optimization problem has constraints

» Example: Observe the points {0.5, 1.0} from a Gaussian
with known mean p = 0.8 and unknown standard deviation

» Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!

o. Want to estimate o by maximum likelihood. » Stuff you should understand:
» Constraint: ¢ must be positive. » How and why we convert learning problems into
» In this case to find the maximum likelihood solution, the optimization problems

Modularity between modelling and optimization
Gradient descent

Why gradient descent can run into problems
Especially local minima

» Methods of choice: Fancy first-order methods (e.g.,

quasi-Newton, CG) for moderate amounts of data.

» There are ways to solve this (in this case: can be done Stochastic gradient for large amounts of data.
analytically). We will not discuss them in this course.

optimization problem is

n
vV vy VvVYyy

subjectto o >0
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