
IAML: Optimization

Nigel Goddard
School of Informatics

Semester 1

1 / 24

Outline

I Why we use optimization in machine learning
I The general optimization problem
I Gradient descent
I Problems with gradient descent
I Batch versus online
I Second-order methods
I Constrained optimization

Many illustrations, text, and general ideas from these slides are taken from Sam Roweis (1972-2010).

2 / 24

Why Optimization

I A main idea in machine learning is to convert the learning
problem into a continuous optimization problem.

I Examples: Linear regression, logistic regression (we have
seen), neural networks, SVMs (we will see these later)

I One way to do this is maximum likelihood

`(w) = log p(y1,x1, y2,x2, . . . , yn,xn|w)

= log
n∏

i=1

p(yi ,xi |w)

=
n∑

i=1

log p(yi ,xi |w)

I Example: Linear regression

3 / 24

I End result: an “error function” E(w) which we want to
minimize.

I e.g., E(w) can be the negative of the log likelihood.
I Consider a fixed training set; think in weight (not input)

space. At each setting of the weights there is some error
(given the fixed training set): this defines an error surface
in weight space.

I Learning == descending the error surface.
I If the data are IID, the error function E is a sum of error

function Ei for each data point

Bayesian Programme 4

• Ideally, we would be Bayesian, introduce a prior p(w), and use
Bayes rule to compute p(w|y1,x1, y2,x2, . . . , yn,xn).

• This is the posterior distribution of the parameters given the data.
A true Bayesian would integrate over it to make future predictions:

p(ynew|xnew, Y,X) =
∫

p(ynew|xnew,w)p(w|Y,X)dw

but often analytically intractable and computationally very difficult

• We can settle for maximizing and using the argmax w∗ to make
future predictions: this is called maximum a-posteriori, or MAP.

• Many of the penalized maximum likelihood techniques we used for
regularization are equivalent to MAP with certain parameter priors:

– quadratic weight decay (shrinkage) ⇔ Gaussian prior (var=1/2Λ)

– absolute weight decay (lasso) ⇔ Laplace prior (decay = 1/Λ)

– smoothing on multinomial parameters ⇔ Dirichlet prior

– smoothing on covariance matrices ⇔ Wishart prior

Error Surfaces and Weight Space 5

• End result: an “error function” E(w) which we want to minimize.

• E(w) can be the negative of the log likelihood or log posterior.

• Consider a fixed training set; think in weight (not input) space.
At each setting of the weights there is some error (given the fixed
training set): this defines an error surface in weight space.

• Learning == descending the error surface.

• Notice: If the data are IID, the error function E is a sum of error
functions En, one per data point.

E(w)

E

w

wj

wi

E(w)

Quadratic Error Surfaces and IID data 6

• A very common form for the cost (error) function is the quadratic:

E(w) = w#Aw + 2w#b + c

• This comes up as the log probability when using Gaussians, since if
the noise model is Gaussian, each of the En is an upside-down
parabola (called a “quadratic bowl” in higher dimensions).

• Fact: sum of parabolas (quadratics) is another parabola (quadratic)

• So the overall error surface is just a quadratic bowl.

• Fact: it is easy to find the minimum of a quadratic bowl:

E(w) = a + bw + cw2 ⇒ w∗ = −b/2c

E(w) = a + b#w + w#Cw ⇒ w∗ = −1

2
C−1b

• Convince yourself that for linear regression with Gaussian noise:

C = XX# and b = −2Xy#

Partial Derivatives of Error 7

• Question: if we wiggle wk and keep everything else the same, does
the error get better or worse?

• Luckily, calculus has an answer to exactly this question: ∂E
∂wk

.

• Plan: use a differentiable cost function E and compute partial
derivatives of each parameter with respect to this error: ∂E

∂wk

• Use the chain rule to compute the derivatives.

• The vector of partial derivatives is called the gradient of the error.
It points in the direction of steepest error descent in weight space.

• Three crucial questions:

– How do we compute the gradient ∇E efficiently?

– Once we have the gradient, how do we minimize the error?

– Where will we end up in weight space?

4 / 24

Role of Smoothness

If E completely unconstrained, minimization is impossible.

w

E(w)

All we could do is search through all possible values w.

Key idea: If E is continuous, then measuring E(w) gives
information about E at many nearby values.

5 / 24

Role of Derivatives

I If we wiggle wk and keep everything else the same, does
the error get better or worse?

I Calculus has an answer to exactly this question: ∂E
∂wk

I So: use a differentiable cost function E and compute
partial derivatives of each parameter

I The vector of partial derivatives is called the gradient of the
error. It is written ∇E = (∂E

∂w1
, ∂E

∂w2
, . . . , ∂E

∂wn
). Alternate

notation ∂E
∂w .

I It points in the direction of steepest error descent in weight
space.

I Three crucial questions:
I How do we compute the gradient ∇E efficiently?
I Once we have the gradient, how do we minimize the error?
I Where will we end up in weight space?

6 / 24

Numerical Optimization Algorithms

I Numerical optimization algorithms try to solve the
general problem

min
w

E(w)

I Most commonly, a numerical optimization procedure takes
two inputs:

I A procedure that computes E(w)
I A procedure that computes the partial derivative ∂E

∂wj

I (Aside: Some use less information, i.e., they don’t use
gradients. Some use more information, i.e., higher order
derivative. We won’t go into these algorithms in the
course.)

7 / 24

Optimization Algorithm Cartoon

I Basically, numerical optimization algorithms are iterative.
They generate a sequence of points

w0,w1,w2, . . .

E(w0),E(w1),E(w2), . . .

∇E(w0),∇E(w1),∇E(w2), . . .

I Basic optimization algorithm is

initialize w
while E(w) is unacceptably high

calculate g = ∇E
Compute direction d from w, E(w), g

(can use previous gradients as well...)
w← w− η d

end while
return w

8 / 24

A Choice of Direction

I The simplest choice d is the current gradient ∇E .
I It is locally the steepest descent direction.
I (Technically, the reason for this choice is Taylor’s theorem

from calculus.)

9 / 24

Gradient Descent

I Simple gradient descent algorithm:

initialize w
while E(w) is unacceptably high

calculate g← ∂E
∂w

w← w− η g
end while
return w

I η is known as the step size (sometimes called learning
rate)

I We must choose η > 0.
I η too small→ too slow
I η too large→ instability

10 / 24

Effect of Step Size

Goal: Minimize
E(w) = w2

−3 −2 −1 0 1 2 3

0

2

4

6

8

w

E
(w

)

I Take η = 0.1. Works well.

w0 = 1.0
w1 = w0 − 0.1 · 2w0 = 0.8
w2 = w1 − 0.1 · 2w1 = 0.64
w3 = w2 − 0.1 · 2w2 = 0.512
· · ·

w25 = 0.0047

11 / 24

Effect of Step Size

Goal: Minimize
E(w) = w2

−3 −2 −1 0 1 2 3

0

2

4

6

8

w

E
(w

)

I Take η = 1.1. Not so good. If you
step too far, you can leap over the
region that contains the minimum

w0 = 1.0
w1 = w0 − 1.1 · 2w0 = −1.2
w2 = w1 − 1.1 · 2w1 = 1.44
w3 = w2 − 1.1 · 2w2 = −1.72
· · ·

w25 = 79.50

I Finally, take η = 0.000001. What
happens here?

12 / 24

“Bold Driver” Gradient Descent

I Simple heuristic for choosing η which you can use if you’re
desperate.

initialize w, η
initialize e← E(w); g← ∇E(w) while η > 0

w1 ← w− ηg
e1 = E(w1); g1 = ∇E
if e1 ≥ e

η = η/2
else

η = 1.01η; w← w1; g← g1; e = e1
end while
return w

I Finds a local minimum of E .

13 / 24

Batch vs online

I So far all the objective function we have seen look like:

E(w; D) =
n∑

i=1

Ei(w; yi ,xi).

D = {(x1, y1), (x2, y2), . . . (xn, yn)} is the training set.
I Each term sum depends on only one training instance
I Example: Logistic regression: Ei(w; yi ,xi) = log p(yi |xi ,w).
I The gradient in this case is always

∂E
∂w

=
n∑

i=1

∂Ei

∂w

I The algorithm on slide 10 scans all the training instances
before changing the parameters.

I Seems dumb if we have millions of training instances.
Surely we can get a gradient that is “good enough” from
fewer instances, e.g., a couple of thousand? Or maybe
even from just one?

14 / 24

Batch vs online

I Batch learning: use all patterns in training set, and update
weights after calculating

∂E
∂w

=
∑

i

∂Ei

∂w

I On-line learning: adapt weights after each pattern
presentation, using ∂Ei

∂w
I Batch more powerful optimization methods
I Batch easier to analyze
I On-line more feasible for huge or continually growing

datasets
I On-line may have ability to jump over local optima

15 / 24

Algorithms for Batch Gradient Descent

I Here is batch gradient descent.
initialize w
while E(w) is unacceptably high

calculate g←∑N
i=1

∂Ei
∂w

w← w− η g
end while
return w

I This is just the algorithm we have seen before. We have
just “substituted in” the fact that E =

∑N
i=1 Ei .

16 / 24

Algorithms for Online Gradient Descent

I Here is (a particular type of) online gradient descent
algorithm
initialize w
while E(w) is unacceptably high

Pick j as uniform random integer in 1 . . .N
calculate g← ∂Ej

∂w
w← w− η g

end while
return w

I This version is also called “stochastic gradient ascent”
because we have picked the training instance randomly.

I There are other variants of online gradient descent.

17 / 24

Problems With Gradient Descent

I Setting the step size η
I Shallow valleys
I Highly curved error surfaces
I Local minima

18 / 24

Shallow Valleys

I Typical gradient descent can be fooled in several ways,
which is why more sophisticated methods are used when
possible. One problem:

“Bold Driver” Gradient Descent 8

•Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

•Algorithm Gradient Descent
w ← GradientDescent(w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;

while(step>0)

w = w0 - step*grad;

(err,grad) ← errorGradient(w,x-train,y-train)

if(err>=errold)

step=step/2; grad=gradold;

else

step=step*1.01; errold=err; w0=w; gradold=grad;

end

end

}
• This algorithm only finds a local minimum of the cost.

• This is batch grad. descent, but mini-batch or online may be better.

Curved Error Surfaces 9

• Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point
directly at the nearest local minimum.

dE
dW

• The local geometry of curvature is measured by the Hessian matrix
of second derivatives: Hij = ∂2E/∂wiwj.

• Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

•Maximum sensible stepsize is 2
λmax

Rate of convergence depends on (1− 2λmin
λmax

).

Momentum 10

• If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

dE
dw

•We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

∆wt
j = β∆wt−1

j + (1− β) ε ∂E/∂wj(w
t)

• Usually, β is quite high, about 0.95.

•When we have to retract a step, we set ∆wj to zero.

• Physically, this is like giving momentum to our weights.

Mini-Batch and Online Optimization 11

•When our data is big, computing the exact gradient is expensive.

• This seems wasteful, since the only thing we are going to use the
gradient for is to make a small change to the weights and then
throw it away and measure it again at the new weights.

• An approximate gradient is just as useful as long as it is somewhat
in line with the true gradient.

•One very easy way to do this is to use only a small batch of
examples (not the whole data set), compute the gradient and make
an update, then move to the next batch of examples. This is
mini-batch optimization.

• In the limit, we can use only one example per batch, this is called
online gradient descent, or stochastic gradient descent.

• These methods are often much faster than exact gradient descent,
and are very effective when combined with momentum.

I Gradient descent goes very slowly once it hits the shallow
valley.

I One hack to deal with this is momentum

dt = βdt−1 + (1− β)η∇E(wt)

I Now you have to set both η and β. Can be difficult and
irritating.

19 / 24

Curved Error Surfaces

I A second problem with gradient descent is that the
gradient might not point towards the optimum. This is
because of curvature

“Bold Driver” Gradient Descent 8

•Once we have the gradient of our error function, how do we
minimize the weights? Follow it! But not too fast...

•Algorithm Gradient Descent
w ← GradientDescent(w0,x-train,y-train) {
step=median(abs(w0(:)))/100; errold=Inf; grad=0;

while(step>0)

w = w0 - step*grad;

(err,grad) ← errorGradient(w,x-train,y-train)

if(err>=errold)

step=step/2; grad=gradold;

else

step=step*1.01; errold=err; w0=w; gradold=grad;

end

end

}
• This algorithm only finds a local minimum of the cost.

• This is batch grad. descent, but mini-batch or online may be better.

Curved Error Surfaces 9

• Notice: the error surface may be curved differently in different
directions. This means that the gradient does not necessarily point
directly at the nearest local minimum.

dE
dW

• The local geometry of curvature is measured by the Hessian matrix
of second derivatives: Hij = ∂2E/∂wiwj.

• Eigenvectors/values of the Hessian describe the directions of
principal curvature and the amount of curvature in each direction.
Near a local minimum, the Hessian is positive definite.

•Maximum sensible stepsize is 2
λmax

Rate of convergence depends on (1− 2λmin
λmax

).

Momentum 10

• If the error surface is a long and narrow valley, grad. descent goes
quickly down the valley walls but very slowly along the valley bottom.

dE
dw

•We can alleviate this by updating our parameters using a
combination of the previous update and the gradient update:

∆wt
j = β∆wt−1

j + (1− β) ε ∂E/∂wj(w
t)

• Usually, β is quite high, about 0.95.

•When we have to retract a step, we set ∆wj to zero.

• Physically, this is like giving momentum to our weights.

Mini-Batch and Online Optimization 11

•When our data is big, computing the exact gradient is expensive.

• This seems wasteful, since the only thing we are going to use the
gradient for is to make a small change to the weights and then
throw it away and measure it again at the new weights.

• An approximate gradient is just as useful as long as it is somewhat
in line with the true gradient.

•One very easy way to do this is to use only a small batch of
examples (not the whole data set), compute the gradient and make
an update, then move to the next batch of examples. This is
mini-batch optimization.

• In the limit, we can use only one example per batch, this is called
online gradient descent, or stochastic gradient descent.

• These methods are often much faster than exact gradient descent,
and are very effective when combined with momentum.

I Note: gradient is the locally steepest direction. Need not
directly point toward local optimum.

I Local curvature is measured by the Hessian matrix:
Hij = ∂2E/∂wiwj .

20 / 24

Local Minima

I If you follow the gradient, where will you end up? Once you
hit a local minimum, gradient is 0, so you stop.

Conjugate Gradients 16

•Observation: at the end of a line search, the new gradient is
(almost) orthogonal to the direction we just searched in.

• So if we choose the next search direction to be the new gradient,
we will always be searching successively orthogonal directions and
things will be very slow.

• Instead, select a new direction so that, to first order, as we move in
the new direction the gradient parallel to the old direction stays
zero. This involves blending the current gradient with the previous
search direction: d(t + 1) = −g(t + 1) + β(t)d(t).

d(t!1)

d(t)

d(t+1)

E
g d(t)=0T

d(t)

d(t+1)

w(t)

w(t+1)

Conjugate Gradients 17

• To first order, all three expressions below satisfy our constraint that
along the new search direction g"d(t) = 0:

d(t + 1) = −g(t + 1) + β(t)d(t)

β(t) =
g"(t + 1)(g(t + 1)− g(t))

d"(t)(g(t + 1)− g(t)
Hestenes-Stiefel

β(t) =
g"(t + 1)(g(t + 1)− g(t))

g"(t)g(t)
Polak-Ribiere

β(t) =
g"(t + 1)g(t + 1)

g"(t)g(t)
Fletcher-Reeves

Convexity, Local Optima 18

• Unfortunately, many error functions while differentiable are not
unimodal. When using gradient descent we can get stuck in local
minima. Where we end up depends on where we start.

er
ro

r

parameter space

• Some very nice error functions (e.g. linear least squares, logistic
regression, lasso) are convex, and thus have a unique (global)
minimum. Convexity means that the second derivative is always
positive. No linear combination of weights can have greater error
than the linear combination of the original errors.

• But most settings do not lead to convex optimization problems.

Constrained Optimization 19

• Sometimes we want to optimize with some constraints on the
parameters.
e.g. variances are always positive
e.g. priors are non-negative and sum to unity (live on the simplex)

• There are two ways to get around this.
First, we can reparametrize so that the new parameters are
unconstrained.
e.g. use log(variances) or use softmax inputs for priors.

• The other way is to explicitly incorporate the constraints into our
cost function.

I Certain nice functions, such as squared error, logistic
regression likelihood are convex, meaning that the second
derivative is always positive. This implies that any local
minimum is global.

I There is no great solution to this problem. It is a
fundamental one. Usually, the best you can do is rerun the
optimizer multiple times from different random starting
points.

21 / 24

Advanced Topics That We Will Not Cover (Part I)

I Some of these issues (shallow valley, curved error
surfaces) can be fixed

I Some of these are second-order methods like Newton’s
method that use the second derivatives

I Also there are fancy first-order methods like quasi-Newton
methods (e.g., limited memory BFGS) and conjugate
gradient

I They are the state of the art methods for logistic regression
(as long as there are not too many data points)

I We will not discuss these methods in the course.
I Other issues (like local minima) cannot be easily fixed

22 / 24

Advanced Topics That We Will Not Cover (Part II)

I Sometimes the optimization problem has constraints
I Example: Observe the points {0.5,1.0} from a Gaussian

with known mean µ = 0.8 and unknown standard deviation
σ. Want to estimate σ by maximum likelihood.

I Constraint: σ must be positive.
I In this case to find the maximum likelihood solution, the

optimization problem is

max
µ,σ

2∑
i=1

1
2σ2 (xi − µ)2

subject to σ > 0

I There are ways to solve this (in this case: can be done
analytically). We will not discuss them in this course.

23 / 24

Summary

I Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!

I Stuff you should understand:
I How and why we convert learning problems into

optimization problems
I Modularity between modelling and optimization
I Gradient descent
I Why gradient descent can run into problems
I Especially local minima

I Methods of choice: Fancy first-order methods (e.g.,
quasi-Newton, CG) for moderate amounts of data.
Stochastic gradient for large amounts of data.

24 / 24

