Mixture models

- Recall types of clustering methods
 - hard clustering: clusters do not overlap
 - element either belongs to cluster or it does not
 - soft clustering: clusters may overlap
 - strength of association between clusters and instances

- Mixture models
 - probabilistically-grounded way of doing soft clustering
 - each cluster: a generative model (Gaussian or multinomial)
 - parameters (e.g. mean/covariance are unknown)

- Expectation Maximization (EM) algorithm
 - automatically discover all parameters for the K “sources”

Gaussian Mixture Model

- Data with D attributes, from Gaussian sources $c_1 \ldots c_L$
 - how typical is x_i under source c_i?
 - how likely that x_i came from c_i?
 - how important is x_i for source c_i: $w_{i,c} = \frac{P(x_i | c_i) P(c_i)}{\sum_{c} P(x_i | c) P(c)}$
 - mean of attribute a in items assigned to c: $\mu_a = \sum w_{i,c} x_{i,a}$
 - covariance of a and b in items from c: $\Sigma_{ab} = \sum w_{i,c} (x_{i,a} - \mu_{a,c})(x_{i,b} - \mu_{b,c})$
 - prior: how many items assigned to c: $P(c) = \sum_c P(x_i | c_i) P(c)$

How to pick K?

- Probabilistic model: $L = \log P(x | \theta) = \sum_{i=1}^{N} \log P(x_i | \theta) P(\theta)$
 - tries to “fit” the data (maximize likelihood)
- Pick K that makes L as large as possible?
 - $K = n$: each data point has its own “source”
 - may not work well for new data points
- Split points into training set T and validation set V
 - for each K: fit parameters of T, measure likelihood of V
 - sometimes still best when $K = n$
- Occam’s razor: pick “simplest” of all models that fit
 - Bayes Inf. Criterion (BIC): $\max_L L - \frac{1}{2} p \log n$
 - Akaike Inf. Criterion (AIC): $\min_L \{2 p - L\}$

Summary

- Walked through 1-d version
 - works for higher dimensions
 - d-dimensional Gaussian, can be non-spherical
 - works for discrete data (lex)
 - d-dimensional multinomial distributions prior
- Maximum likelihood of the data: $P(x_{1:n} | \theta) = \prod_{i=1}^{N} P(x_i | \theta)$
- Similar to K-means
 - sensitive to starting point, converges to a local maximum
 - convergence: when change in $P(x_{1:n} | \theta)$ is sufficiently small
 - cannot discover K (likelihood keeps growing with K)
- Different from K-means
 - soft clustering: instance can come from multiple “clusters”
 - co-variance: notion of “distance” changes over time
- How can you make GMM = K-means?