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» In this class we will discuss linear classifiers.

» For each class, there is a region of feature space in which
the classifier selects one class over the other.

» The decision boundary is the boundary of this region. (i.e.,
where the two classes are “tied”)

» In linear classifiers the decision boundary is a line.
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Logistic function

Logistic regression

Learning logistic regression
Optimization

The power of non-linear basis functions
Least-squares classification

Generative and discriminative models
Relationships to Generative Models
Multiclass classification

Reading: W & F §4.6 (but pairwise classification,
perceptron learning rule, Winnow are not required)
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Decision Boundaries Example Data
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Linear Classifiers

A Geometric View

» |In a two-class linear classifier, we

learn a function

X,

F(x,w) =w'Xx+ w

instance is with y = 1.

that we learn from data.

Explanation of Geometric View

that represents how aligned the

» To do classification of an input x:

if F(x,w) >0

» w are parameters of the classifier
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Two Class Discrimination

» The decision boundary in this case is
{x|w'x + wy = 0}

» W is a normal vector to this surface

» (Remember how lines can be written in terms of their
normal vector.)

» Notice that in more than 2 dimensions, this boundary will
be a hyperplane.
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» For now consider a two class case: y € {0,1}.

» From now on we’ll write x = (1, X1, Xz, . .. Xg) and
w = (Wp, Wy, ... Wy).

» We will want a linear, probabilistic model. We could try
P(y = 1x) = w'x. But this is stupid.

» Instead what we will do is

Py = 11x) = f(w'x)

» f must be between 0 and 1. It will squash the real line into
[0,1]
» Furthermore the fact that probabilities sum to one means

P(y =0|x) =1— f(w'x)
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The logistic function

» We need a function that returns probabilities (i.e. stays

between 0 and 1).

» The logistic function provides this
» f(z) =0(2) =1/(1 + exp(—2)).
» As z goes from —oo to oo, so f goes from0to 1, a

“squashing function”

» It has a “sigmoid” shape (i.e. S-like shape)
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For this slide write W = (wy, wa, ... wy) (i.e., exclude the
bias wp)

The bias parameter wy shifts the position of the
hyperplane, but does not alter the angle

The direction of the vector w affects the angle of the
hyperplane. The hyperplane is perpendicular to w

The magnitude of the vector w effects how certain the
classifications are

For small w most of the probabilities within the region of
the decision boundary will be near to 0.5.

For large w probabilities in the same region will be close to
1 orO.
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Linear weights

» Linear weights + logistic squashing function == logistic

regression.

» We model the class probabilities as

D

ply =1[x) =o(>_ wx;) = o(Ww'x)
j=0

» o(z) = 0.5 when z = 0. Hence the decision boundary is

given by w'x = 0.

» Decision boundary is a M — 1 hyperplane fora M

dimensional problem.
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Learning Logistic Regression

» Want to set the parameters w using training data.
» As before:

» Write out the model and hence the likelihood

» Find the derivatives of the log likelihood w.r.t the
parameters.

» Adjust the parameters to maximize the log likelihood.
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» Assume data is independent and identically distributed.
» Call the data set D = {(X1, 1), (X2, ¥2), .- (Xn, ¥n)}
» The likelihood is

p(Diw) = [ [ p(y = yilxi, w)
=1

n
= p(y = 11x,w)* (1 - p(y = 1]x;,w))"
=1

» Hence the log likelihood L(w) = log p(D|w) is given by

L(w) = zn:y/' logo(w'x;) + (1 — yi)log(1 — o(w'x)))

i=1

13/22

Fitting this into the general structure for learning algorithms:

» Define the task: classification, discriminative
» Decide on the model structure: logistic regression model
» Decide on the score function: log likelihood

» Decide on optimization/search method to optimize the
score function: numerical optimization routine. Note we
have several choices here (stochastic gradient descent,
conjugate gradient, BFGS).
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» |t turns out that the likelihood has a unique optimum (given
sufficient training examples). It is convex.

» How to maximize? Take gradient

oL T
oW Z(YI — (W' X;))X;
I i=

» (Aside: something similar holds for linear regression
OE &, 7
ow, > (W p(x) — yi)x;
i=1
where E is squared error.)

» Unfortunately, you cannot maximize L(w) explicitly as for
linear regression. You need to use a numerical
optimisation method, see later.
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XOR and Linear Separability

» A problem is linearly separable if we can find weights so
that

» WX + wy > 0 for all positive cases (where y = 1), and
» WX + wy < 0 for all negative cases (where y = 0)

» XOR

» XOR becomes linearly separable if we apply a non-linear
tranformation ¢(x) of the input — what is one?
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Generative and Discriminative Models

The power of non-linear basis functions

Using two Gaussian basis functions ¢1(x) and ¢»(x)

Figure credit: Chris Bishop, PRML

As for linear regression, we can transform the input space if we
want X — o(X 17/22

Generative Classifiers can be Linear Too

» Notice that we have done something very different here
than with naive Bayes.

» Naive Bayes: Modelled how a class “generated” the
feature vector p(x|y). Then could classify using

p(y[x) oc p(x|y)p(y)

. This called is a generative approach.

» Logistic regression: Model p(y|x) directly. This is a
discriminative approach.

» Discriminative advantage: Why spend effort modelling
p(x)? Seems a waste, we're always given it as input.

» Generative advantage: Can be good with missing data
(remember how naive Bayes handles missing data). Also
good for detecting outliers. Or, sometimes you really do
want to generate the input.
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Multiclass classification

Two scenarios where naive Bayes gives you a linear classifier.

1. Gaussian data with equal covariance. If
p(Xly = 1) ~ N(py, =) and p(x|y = 0) ~ N(pp, ) then

ply = 1[x) = o(W'x + wp)

for some (wp, W) that depends on p4, po, X and the class
priors

2. Binary data. Let each component x; be a Bernoulli variable
i.e. x; € {0, 1}. Then a Naive Bayes classifier has the form

p(y = 11X) = o (WX + wo)

3. Exercise for keeners: prove these two results
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» Create a different weight vector wy for each class, to
classify into kK and not-k.

» Then use the “softmax” function
exp(w/x)

> 7 exp(w]x)

» Note that 0 < p(y = k|x) < 1 and 21-021 p(y =jjx) =1
» This is the natural generalization of logistic regression to
more than 2 classes.

p(y = k|x) =
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Least-squares classification

» Logistic regression is more complicated algorithmically
than linear regression

» Why not just use linear regression with 0/1 targets?

Green: logistic regression; magenta, least-squares regression

Figure credit: Chris Bishop, PRML
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Summary

» The logistic function, logistic regression
» Hyperplane decision boundary
» Linear separability

» We still need to know how to compute the maximum of the
log likelihood. Coming soon!
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