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The Regression Problem

» Classification and regression problems:

» Classification: target of prediction is discrete
» Regression: target of prediction is continuous

» Training data: Set D of pairs (x;, y;) fori=1,...,n, where
x;cRPandy, e R
» Today: Linear regression, i.e., relationship between x and
y is linear.
» Although this is simple (and limited) it is:
» More powerful than you would expect

» The basis for more complex nonlinear methods
» Teaches a lot about regression and classification
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Examples of regression problems

The linear model

Fitting the linear model to data

Probabilistic interpretation of the error function
Examples of regression problems

Dealing with multiple outputs

Generalized linear regression

Radial basis function (RBF) models

» Robot inverse dynamics: predicting what torques are
needed to drive a robot arm along a given trajectory

» Electricity load forecasting, generate hourly forecasts two
days in advance (see W & F, §1.3)

» Predicting staffing requirements at help desks based on
historical data and product and sales information,

» Predicting the time to failure of equipment based on
utilization and environmental conditions
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The Linear Model Toy example: Data

» Linear model <
f(X; W) = Wo + wiXy + ...+ WpXp ® |
= p(x)w ~ ] s T
N -
where ¢(x) = (1,x1,...,Xxp) = (1,x7) .
and ° 7 T
WO T| | . '..
W = Wi (1) cl\l B
I I I I I I I
Wp -3 -2 -1 0 1 2 3
» The maths of fitting linear models to data is easy. We use X

the notation ¢(x) to make generalisation easy later.
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Toy example: Data With two features
Y

< < -

-1

-2

N
|

Instead of a line, a plane. With more features, a hyperplane.

Figure: Hastie, Tibshirani, and Friedman
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With more features With more features

CPU Performance Data Set

» Predict: PRP: published relative performance

MYCT: machine cycle time in nanoseconds (integer)
MMIN: minimum main memory in kilobytes (integer)
MMAX: maximum main memory in kilobytes (integer)
CACH: cache memory in kilobytes (integer)

CHMIN: minimum channels in units (integer)
CHMAX: maximum channels in units (integer)

vV v.v. v v Y

In matrix notation

PRP = - 56.1

.049 MYCT
.015 MMIN
.006 MMAX
.630 CACH
.270 CHMIN
.46 CHMAX

+ + 4+ +
R O O O O O
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Linear Algebra: The 1-Slide Version

» Design matrix is n x (D + 1)

1 X111 X412 ... X1D

1 Xo1 Xoo ... Xop
=1 . . . .

1 Xn‘] Xn2 PP XnD

> X; is the jth component of the training input x;

> Lety = (y1,...,¥n)7
» Theny = dwis ...?

What is matrix multiplication?

ayy app as b;
A= |ax ax ams|,b=|b
az1 as» ass b3

First consider matrix times vector, i.e., Ab. Two answers:

1. Abis a linear combination of the columns of A

a1 ai2 ais
Ab=Dby a1 | + b2 | ax | +bs | ax
as1 aszo asa

2. Abis a vector. Each element of the vector is the dot
products between b and one row of A.

(@11, a2, ai3)b
Ab = | (&21, a2, a23)b
(@31, asz, azz)b
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Linear model (part 2) Solving for Model Parameters

In matrix notation: This looks like what we’ve seen in linear algebra
» Design matrixisnx (D+1) y =ow
1 X{1 Xi2 ... Xip We know y and ¢ but not w.
© 1 x?1 X?g . X2.D

So why not take w = o~ 'y? (You can’t, but why?)
1 Xn1 Xn2 ... XnD
> X; is the jth component of the training input x;

» Lety = (y1,...,¥n)"
» Theny = dw is the model’s predicted values on training
inputs.
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Solving for Model Parameters Loss function

This looks like what we’ve seen in linear algebra

y = ow
Want a loss function O(w) that

We know y and ¢ but not w. o
» We minimize wrt w.

So why not take w = ®~'y? (You can't, but why?) > At minimum, ¥ looks like y.
» (Recall: y depends on w)

Three reasons: N
y = ow

» & is notsquare. ltisnx (D+1).

» The system is overconstrained (n equations for D + 1
parameters), in other words

» The data has noise
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Fitting a linear model to data Fitting a linear model to data

» A common choice: squared error
(makes the maths easy)

n

ow) => (y; —w'x)?

i=1
» In the picture: this is sum of
squared length of black sticks.

» (Each one is called a residual,
i.e., each y; — w'x;)
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The Solution

O(w) = zn:(}/i —w'x)?
i—

= (y — ow)"(y — ow)

» We want to minimize this with respect to w.
» The error surface is a parabolic bowl

S
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» How do we do this? 18/38
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Answer: to minimize O(w) = "7 . (y; — w'x;)?, set partial
derivatives to 0.
This has an analytical solution

W= (7o) oy

(¢7d) "o is the pseudo-inverse of ¢
First check: Does this make sense? Do the matrix
dimensions line up?

Then: Why is this called a pseudo-inverse? ()
Finally: What happens if there are no features?
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Probabilistic interpretation of O(w)

v

Assume that y = w’x + ¢, where e ~ N(0, 0?)
(This is an exact linear relationship plus Gaussian noise.)
This implies that y|x; ~ N(w'x;, o?), i.e.

v

v

(v — wTx;)?

—log p(yilx;) = log v2r + log o + 552

v

So minimising O(w) equivalent to maximising likelihood!
Can view w'x as E[y|x].
Squared residuals allow estimation of o2

v

v

2 1%
6% = - > (vi—wix)?
i—
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Sensitivity to Outliers

» Linear regression is sensitive to outliers

» Example: Suppose y = 0.5x + ¢, where € ~ N(0, v0.25),
Fitting this into the general structure for learning algorithms: and then add a point (2.5,3):

Define the task: regression
Decide on the model structure: linear regression model <
Decide on the score function: squared error (likelihood)

Decide on optimization/search method to optimize the
score function: calculus (analytic solution)

vV v.vY
15 2.0
|

1.0

0
=}

<
S}

T T T T T T
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Diagnositics Dealing with multiple outputs

Graphical diagnostics can be useful for checking:
» |s the relationship obviously nonlinear? Look for structure
in residuals? » Suppose there are q different targets for each input x

» Are there obvious outliers? » We introduce a different w; for each target dimension, and
do regression separately for each one

The goal isn’t to find all problems. You can’t. The goal is to find . . .
» This is called multiple regression

obvious, embarrassing problems.

Examples: Plot residuals by fitted values. Stats packages will
do this for you.
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Basis expansion

» Design matrix is n x m
» We can easily transform the original attributes x

o : : : P1(X1)  d2(X1) ... Om(X1)
non-linearly into ¢(x) and do linear regression on them 61(X) da(Xa) ... bm(Xa)

61(Xn) G2(Xn) ... Gm(Xn)

1 - 1 \\\ \ 7 \ 1
0.5 / / 0.75 0.75;" » Let y= (}’1a o ,Yn)T
7 * o0 » Minimize E(w) = |y — ®w|?. As before we have an
-os|) 0.25 \ 0.25 analytical solution
= 0 1 °0 o 1 o W= (¢T¢)_1¢TV
polynomial Gaussians sigmoids > (7)) 17 is the pseudo-inverse of ¢

Figure credit: Chris Bishop, PRML

25/38 26/38

Example: polynomial regression More about the features

» Transforming the features can be important.
» Example: Suppose | want to predict the CPU performance.
» Maybe one of the features is manufacturer.

if Intel

if AMD

if Apple

if Motorola

X1 =

AW N =

» Let’'s use this as a feature. Will this work?

Figure credit: Chris Bishop, PRML
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» Transforming the features can be important.
Example: Suppose | want to predict the CPU performance.

v

» Maybe one of the features is manufacturer.
1 if Intel
2 if AMD
X1 = ,
3 if Apple
4 if Motorola

Let’s use this as a feature. Will this work?

Not the way you want. Do you really believe AMD is double
Intel?

v

v
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Radial basis function (RBF) models

> Set ¢i(X) = exp(—3|Xx — ¢;[2/a?).

» Need to position these “basis functions” at some prior
chosen centres ¢; and with a given width «. There are
many ways to do this but choosing a subset of the
datapoints as centres is one method that is quite effective

» Finding the weights is the same as ever: the
pseudo-inverse solution.
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» Instead convert this into 0/1

x1 = 1 if Intel, 0 otherwise
xo = 1 if AMD, 0 otherwise

» Note this is a consequence of linearity. We saw something
similar with text in the first week.

» Other good transformations: log, square, square root

RBF example

y
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More about the features More about the features
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RBF example An RBF feature

. o Original data RBF feature, ¢; = 3, ay = 1
NI + T +
a4 - a7 + a7 +
A X A X
o o | v |
— | — — -
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Another RBF feature RBF example

Notice how the feature functions “specialize” in input space. Run the RBF with both basis functions above, plot the residuals

T
. i — O(Xj)'W
Original data RBF feature, ¢, = 6, ap = 1 Yi — o(X;)
i + D Original data Residuals
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RBF: Ay, there’s the rub Summary

» So why not use RBFs for everything?

» Short answer: You might need too many basis functions. » Linear regression often useful out of the box.
» This is especially true in high dimensions (we’ll say more » More useful than it would be seem because linear means
later) linear in the parameters. You can do a nonlinear transform
of the data first, e.g., polynomial, RBF. This point will come

» Too many means you probably overfit.
» Extreme example: Centre one on each training point.

» Also: notice that we haven’t seen yet in the course how to
learn the RBF parameters, i.e., the mean and standard
deviation of each kernel

» Main point of presenting RBFs now: Set up later methods
like support vector machines

up again.
» Maximum likelihood solution is computationally efficient
(pseudo-inverse)

» Danger of overfitting, especially with many features or
basis functions
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