Overview

- Nearest neighbour method
 - classification and regression
 - practical issues: k, distance, ties, missing values
 - optimality and assumptions
- Making kNN fast:
 - K-D trees
 - inverted indices
 - fingerprinting
- References: W&F sections 4.7 and 6.4

Intuition for kNN

- set of points \((x, y)\)
 - two classes
 - is the box red or blue
 - how did you do it
 - use Bayes rule?
 - a decision tree?
 - fit a hyperplane?
 - nearby points are red
 - use this as a basis for a learning algorithm

Nearest neighbour classification

- Use the intuition to classify a new point \(x^*\):
 - find the most similar training example \(x^*\)
 - predict its class \(y^*\)
- Voronoi tessellation
 - partitions space into regions
 - boundary: points at same distance from two different training examples
- Classification boundary
 - non-linear, reflects classes well
 - compare to NB, DT, logistic
 - impressive for simple method

Nearest neighbour: outliers

- Algorithm is sensitive to outliers
 - single mislabeled example dramatically changes boundary
- No confidence \(P(y|x)\)
- Insensitive to class prior
- Idea:
 - use more than one nearest neighbor to make decision
 - count class labels in \(k\) most similar training examples
 - many “triangles” will outweigh single “circle” outlier

kNN classification algorithm

- Given:
 - training examples \(\{x_i, y_i\}\)
 - \(x_i\): attribute-value representation of examples
 - \(y_i\): class label (ham, spam), digit \((0,1,\ldots,9)\) etc.
 - testing point \(x\) that we want to classify
- Algorithm:
 - compute distance \(D(x, x_i)\) to every training example \(x_i\)
 - select \(k\) closest instances \(x_1, \ldots, x_k\) and their labels \(y_1, \ldots, y_k\)
 - output the class \(y^*\) which is most frequent in \(y_1 \ldots y_k\)

Example: handwritten digits

- 16x16 bitmaps
- 8-bit grayscale
- Euclidean distance
 - over raw pixels
 - \(D(A,B) = \sqrt{\sum \sum (A_i - B_i)^2}\)
- Accuracy:
 - 7-NN = 95.2%
 - SVM = 95.8%
 - humans = 97.5%

kNN regression algorithm

- Given:
 - training examples \(\{x_i, y_i\}\)
 - \(x_i\): attribute-value representation of examples
 - \(y_i\): real-valued target (profit, rating on YouTube, etc.)
 - testing point \(x\) that we want to predict the target
- Algorithm:
 - compute distance \(D(x, x_i)\) to every training example \(x_i\)
 - select \(k\) closest instances \(x_1, \ldots, x_k\) and their labels \(y_1, \ldots, y_k\)
 - output the mean of \(y_1 \ldots y_k\):
 \[\hat{y} = f(x) = \frac{1}{k} \sum_{i=1}^{k} y_i \]

Example: kNN regression in 1-d
Choosing the value of k

- Value of k has strong effect on kNN performance
 - large k → everything classified as the most probable class: PV(y)
 - small k → highly variable, unstable decision boundaries
 - small changes to training set → large changes in classification
 - affects “smoothness” of the boundary
- Selecting the value of k
 - set aside a portion of the training data (validation set)
 - vary k, observe training & validation error
 - pick k that gives best generalization performance

kNN: practical issues

- Resolving ties:
 - equal number of positive/negative neighbours
 - use odd k (doesn’t solve multi-class)
- Breaking ties:
 - random: flip a coin to decide positive / negative
 - prior: pick class with greater prior
 - nearest: use 1nn classifier to decide
- Missing values:
 - have to “fill in”, otherwise can’t compute distance
 - key concern: should distance be as little as possible
 - reasonable choice: average value across entire dataset

kNN, Parzen Windows and Kernels

- Parzen window: average of the training data
- Kernel function: smooths the training data
- Parzen window: average of the training data
- Kernel function: smooths the training data

Distance measures

- Key component of the kNN algorithm
 - defines which examples are similar & which aren’t
 - can have strong effect on performance
- Euclidean (numeric attributes): $D(x, x') = \sqrt{\sum_{i=1}^{n}(x_i - x'_i)^2}$
 - symmetric, spherical, treats all dimensions equally
 - sensitive to extreme differences in single attribute
 - behaves like a “soft” logical OR
- Hamming (categorical attributes): $D(x, x') = \sum_{i} I(x_i \neq x'_i)$
 - number of attributes where x, x' differ

Custom distance measures (BM25 for text)

kNN pros and cons

- Almost no assumptions about the data
 - smoothness: nearby regions of space → same class
 - assumptions implied by distance function (only locally)
- Non-parametric approach: “let the data speak for itself”
 - nothing to infer from the data, except it and possible DJ
- Easy to update in online setting: just add new item to training set
- Need to handle missing data: fill-in or create a special distance
- Sensitive to class-outliers (mislabeled training instances)
- Sensitive to lots of irrelevant attributes (affect distance)
- Computational expensive:
 - space: need to store all training examples
 - time: need to compute distance to all examples: O(nd)
 - n → number of training examples, d → cost of computing distance
 - require system & data parallel to avoid slow performance
 - naively testing, not taking time into account

Summary: kNN

- Key idea: nearby points → same class
 - important to select good distance function
- Can be used for classification and regression
- Simple, non-linear, asymptotically optimal
 - does not make assumptions about the data
 - “let the data speak for itself”
- Select k by optimizing error on held-out set
- Naive implementations slow for big datasets
 - use KD trees (low-d) or inverted lists (high-d)

Why is kNN slow?

- What you see
 - Training set:
 - $\{1.3, 3.2, 4.3, 5.3, 6.4, 7.2, 8.0, 7.0, 9.0\}$
 - Testing instance:
 - $\{7.4\}$
 - Nearest neighbors:
 - compare one-by-one to each training instance
 - n comparisons
 - each takes d operations

- What algorithm sees
 - Training set:
 - $\{1.3, 3.2, 4.3, 5.3, 6.4, 7.2, 8.0, 7.0, 9.0\}$
 - Testing instance:
 - $\{7.4\}$
 - Nearest neighbors:
 - compare one-by-one to each training instance
 - n comparisons
 - each takes d operations

Making kNN fast

- Training: O(d), but testing: O(nd)
- Reduce d: dimensionality reduction
 - simple feature selection, other methods O(d^2)
- Reduce n: don’t compare to all training examples
 - idea: quickly identify m<n potential near neighbors
 - compare only to these, pick k nearest neighbors: O(mn) time
 - K-D trees: low-dimensional, real-valued data
 - $O(d \log n)$ only works when $d < n$, may miss neighbors
 - Inverted lists: high-dimensional, discrete data
 - $O(d \log n)$ only works when $d < n$, may miss neighbors
 - Locality-sensitive hashing: high-d, discrete or real-valued
 - $O(d \log n)$, $k << n$, small fingerprint, may miss neighbors

Distance measures (2)

- Minkowski distance (p-norm): $D(x, x') = \left(\sum_{i=1}^{n}(x_i - x'_i)^p\right)^{1/p}$
 - p=2: Euclidean
 - p=1: Manhattan
 - p=0: Hamming → logical AND
 - p=-\infty: $max_{i} |x_i - x'_i|$ → logical OR
- Kullback-Leibler (KL) divergence:
 - for histograms $\sum_{i} x_i > 0, \sum_{i} y_i = 1$:
 - $D(x, x') = -\sum_{i} x_i \log \frac{x_i}{y_i}$
 - asymmetric, excess bits to encode with x with x'}
K-D tree example

- Building a K-D tree from training data:
 - pick random dimension, find median, split data, repeat
- Find NNs for new point (7,4)
 - find region containing (7,4)
 - compare to all points in region

Locality-Sensitive Hashing (LSH)

- Random hyper-planes \(h_1, \ldots, h_k \)
 - space sliced into \(2^k \) regions (polytopes)
 - compare \(x \) only to training points in the same region \(R \)
- Complexity: \(O(kd + 2n/k) \)
 - \(O(kd) \) to find region \(R \), \(k \ll n \)
 - dot-product \(x \) with \(h_i \)
 - compare to \(n/2^k \) points in \(R \)
- Inexact: missed neighbors
 - repeat with different \(h_1, \ldots, h_k \)
- Why not K-D tree?

Inverted list example

- Data structure used by search engines (Google, etc)
 - list all training examples that contain particular attribute
 - assumption: most attribute values are zero (sparseness)
- Given a new testing example:
 - merge inverted lists for attributes present in new example
 - \(O(n) \): \(d \) non-zero attributes, \(n \) avg. length of inverted list

<table>
<thead>
<tr>
<th>Example</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1: “send your password”</td>
<td>spam</td>
</tr>
<tr>
<td>D2: “send us review”</td>
<td>ham</td>
</tr>
<tr>
<td>D3: “send us password”</td>
<td>spam</td>
</tr>
<tr>
<td>D4: “send us details”</td>
<td>ham</td>
</tr>
<tr>
<td>D5: “send your password”</td>
<td>spam</td>
</tr>
<tr>
<td>D6: “review your account”</td>
<td>spam</td>
</tr>
<tr>
<td>D7: “new email”</td>
<td>account</td>
</tr>
</tbody>
</table>

Note: Examples are from various online sources.