Introductory Applied Machine Learning

Generalization, Overfitting, Evaluation

Victor Lavrenko and Nigel Goddard School of Informatics

Under- and Over-fitting examples

Regression:

fits noise in the data

Classification:

cannot capture pattern

Estimating Generalization Error

- · Testing error:
- $E_{test} = \frac{1}{n} \sum_{i} error(f_D(\mathbf{x}_i), y_i)$
- · set aside part of training data (testing set)
- · learn a predictor without using any of this data
- · predict values for testing set, compute error
- · gives an estimate of true generalization error
 - if testing set is unbiased sample from p(x,y): $\lim_{x \to x} E_{test} = E_{test}$
- how close? depends on n
- Ex: binary classification, 100 instances
 - assume: 75 classified correctly, 25 incorrectly
 - E_{test} = 0.25, E_{gen} around 0.25, but how close?

Chevrishi ii 2014 Victor Laurenko

Generalization

- Training data: {x, y}
- · examples that we used to train our predictor
- . e.g. all emails that our users labelled ham / spam
- Future data: {x, ?}
 - · examples that our classifier has never seen before
 - . e.g. emails that will arrive tomorrow
- · Want to do well on future data, not training
 - · not very useful: we already know y,
 - easy to be perfect on training data (DT, kNN, kernels)
 - · does not mean you will do well on future data
 - · can over-fit to idiosyncrasies of our training data

Flexible vs. inflexible predictors

- · Each dataset needs different level of "flexibility"
 - · depends on task complexity + available data
- · want a "knob" to get rigid / flexible predictors
- Most learning algorithms have such knobs:
 - · regression: order of the polynomial
 - NB: number of attributes, limits on σ^2 , ε
 - DT: #nodes in the tree / pruning confidence
 - · kNN: number of nearest neighbors
- · SVM: kernel type, cost parameter

Tune to minimize generalization error

Buture dials

around mean

need to get

Confidence Interval for Future Error

- · What range of errors can we expect for future test sets?
 - E_{last} ± ΔE such that 95% of future test sets fall within that interval
- E_{test} is an unbiased estimate of E = true error rate
 - · E = probability our system will misclassify a random instance
 - take a random set of n instances, how many misclassified? \leftarrow our test set is
 - . flip E-biased coin n times, how many heads will we get?
 - Binomial distribution with mean = n E, variance = n E (1-E)
 - E_{sture}= #misclassified / n. ~ Gaussian, mean E, variance = E(1-E) / n
 - 2/3 future test sets will have error in E ± √(E(1-E)/ri $CI = E \pm \sqrt{E(1-E)/n} \cdot \Phi^{-1} \left(\frac{1-p}{2}\right)$
 - p% confidence interval for future error:
 - for n=100 examples, p=0.95 and E = 0.25
 - $\sigma = \sqrt{0.25 \cdot 0.75/100} = .043$
 - CI = $0.25 \pm 1.96 \cdot \sigma = 0.25 \pm 0.08$
 - n=100, p=0.99 → CI = 0.25 ± 0.11
 - r=10000, p=0.95 → CI = 0.25 ± 0.008

Under- and Over-fitting

- Over-fitting:
 - predictor too complex (flexible)
 - · fits "noise" in the training data
 - patterns that will not re-appear
 - · predictor F over-fits the data if:
 - · we can find another predictor F
 - which makes more mistakes on training data: E_{train}(F') > E_{train}(F)
 - but fewer mistakes on unseen future data: E_{cten}(F') < E_{cen}(F)
- Under-fitting:
 - predictor too simplistic (too rigid)
 - · not powerful enough to capture salient patterns in data
- can find another predictor F' with smaller $E_{\textit{train}}$ and $E_{\textit{gen}}$

Training vs. Generalization Error

Training error:

models

Model Complexity high

Usually

future data

- Generalization error: · how well we will do on future data
- don't know what future data x, will be
- · don't know what labels y, it will have
- but know the "range" of all possible {x,y}

 x: all possible 20x20 black/white bitmaps y: {0,1,...,9} (digits)

Can never compute generalisation error

Training, Validation, Testing sets

Constight 6:2014 Mater Lawrence

- · Training set: construct classifier
 - · NB: count frequencies, DT: pick attributes to split on
- Validation set: pick algorithm + knob settings
 - pick best-performing algorithm (NB vs. DT vs. ...)
- fine-tune knobs (tree depth, k in kNN, c in SVM ...)
- · Testing set: estimate future error rate
 - · never report best of many runs
 - · run only once, or report results of every run
- Split randomly to avoid bias

Constidute 2014 Mater Laurake

Cross-validation

- · Conflicting priorities when splitting the dataset
 - · estimate future error as accurately as possible
 - large testing set: big n_{test} → tight confidence interval
 - · learn classifier as accurately as possible
 - large training set: big n_{train} → better estimates
 - training and testing cannot overlap: n_{train} + n_{test} = const
- Idea: evaluate Train → Test, then Test → Train, average results
 - · every point is both training and testing, never at the same time
 - · reduces chances of getting an unusual (biased) testing set
 - 5-fold cross-validation
 - · randomly split the data into 5 sets
 - . test on each in turn (train on 4 others)
 - · average the results over 5 folds
 - more common: 10-fold

Classification

Regression

Unsupervised

· Are we doing well? Is system A better than B?

· how often we classify something right / wrong

· how close are we to what we're trying to predict

· how well do we describe our data

· in general - really hard

Evaluation measures

A measure of how (in)accurate a system is on a task

• in many cases Error (Accuracy / PC) is not the best measure

· using the appropriate measure will help select best algorithm

Leave-one-out

- n-fold cross-validation (n = total number of instances)
 - predict each instance, training on all (n-1) other instances
- · Pros and cons:
 - · best possible classifier learned: n-1 training examples
 - · high computational cost: re-learn everything n times
 - · not an issue for instance-based methods like kNN
 - · there are tricks to make such learning faster
 - · classes not balanced in training / testing sets
 - random data, 2 equi-probable classes → wrong 100% of the time
 - testing balance: {1 of A, 0 of B} vs. training: {n/2 of B, n/2-1 of A}
 - duplicated data → nothing can beat 1NN (0% error)
 - · wouldn't happen with 10-fold cross-validation

Constell 6 20H Victor Levroit

Classification measures: basics

all testing instances

Confusion matrix for two-class classification

Want: large diagonal.

Classification Error

Stratification

· training / testing sets have classes in different proportions

· keep class labels balanced across training / testing sets

Conside 6 2014 Natur Levenko

K-fold cross-validation: random splits → imbalance

· assemble ith part from all classes to make the ith fold

· simple way to guard against unlucky splits

· randomly split each class into K parts

Problems with leave-one-out:

· not limited to leave-one-out

· Stratification

recipe:

- Classification error = errors total = FP+FN / TP+TN+FP+FN
- Accuracy = $(1 error) = \frac{correct}{total} = \frac{TP + TN}{TP + TN + FP + FN}$
- · Basic measure of "goodness" of a classifier
- Problem: cannot handle unbalanced classes
 - · ex1: predict whether an earthquake is about to happen
 - · happen very rarely, very good accuracy if always predict "No"
 - · solution: make FNs much more "costly" than FPs
 - · ex2: web search: decide if a webpage is relevant to user
 - 99.9999% of pages not relevant to any query → retrieve nothing
 - solution: use measures that don't involve TN (recall / precision)

Countable 0.2014 Mater Lawrence

Accuracy and un-balanced classes

- You're predicting Nobel prize (+) vs. not (*)
- · Human would prefer classifier A.
- Accuracy will prefer classifier B (fewer errors)
- Accuracy poor metric here

Misses and False Alarms

- False Alarm rate = False Positive rate = FP / (FP+TN)
 - · % of negatives we misclassified as positive
- Miss rate = False Negative rate = FN / (TP+FN)
 - · % of positives we misclassified as negative
- Recall = True Positive rate = TP / (TP+FN)
 - · % of positives we classified correctly (1 Miss rate)
- Precision = TP / (TP + FP)
 - · % positive out of what we predicted was positive
- · Meaningless to report just one of these
 - · trivial to get 100% recall or 0% false alarm
 - typical: recall/precision or Miss / FA rate or TP/FP rate

Constalt 0.20% Vistor Lavoule

Evaluation (recap)

- · Predicting class C (e.g. spam)
 - · classifier can make two types of mistakes:
 - . FP: false positives non-spam emails mistakenly classified as spam
 - · FN: false negatives spam emails mistakenly classified as non-spam
 - . TP/TN: true positives/negatives correctly classified spam/non-spam
 - common error/accuracy measures:

- False Alarm = False Positive rate = FP / (FP+TN) Miss = False Negative rate = FN / (TP+FN)
- · Recall = True Positive rate = TP / (TP+FN)
- Precision = TP / (TP+FP)

always report in pairs, e.g.: Miss / FA or Recall / Prec

Constidute 2014 Mater Laurake

Utility and Cost

- · Sometimes need a single-number evaluation measure
 - · optimizing the learner (automatically), competitive evaluation
 - · may know costs of different errors, e.g. earthquakes:
 - . false positive: cost of preventive measures (evacuation, lost profit)
 - . false negative: cost of recovery (reconstruction, liability)
- · Detection cost: weighted average of FP, FN rates

Cost = C_{FP} * FP + C_{FN} * FN

. F-measure: harmonic mean of recall, precision

F1 = 2 / (1 / Recall + 1 / Precision)

[Information Retrieval]

· Domain-specifc measures:

· e.g. observed profit/loss from +/- market prediction

ROC convex hull

- · System A: better at high thresholds (high-precision)
- . System B: better at low thresholds (high-recall)
- System C: for each x: flip a p-coin, heads: A(x), tails: B(x)

· if x was really positive:

· if x was really negative:

FP_C = p FP_A + (1-p) FP_B

· may be better than either A or B

· example: Netflix challenge

Mean Absolute Error

· less sensitive to outliers

· many small errors = one large error

· best 0th order baseline: median(yi) · not the mean as for MSE

Median Absolute Deviation (MAD): med{If(x_i)-v_i}

Convrience 2014 Victor Laurence

- · robust, completely ignores outliers
- can define similar squared error: median{(f(x_i)-y_i)²}
- · difficult to work with (can't take derivatives)
- Sensitive to mean, scale

Thresholds in Classification

- Two systems have the following performance:
 - A: True Positive = 50%, False Positive = 20%
 - B: True Positive = 100%. False Positive = 60%
- Which is better? (assume no-apriori utility)
 - very misleading question
 - · A and B could be the same exact system
 - · operating at different thresholds

Constalt 6 20H Vistor Levron

Evaluating regression

- · Classification:
 - · count how often we are wrong
- · Regression:
 - · predict numbers y, from inputs x,
 - · always wrong, but by how much?
 - · distance between predicted & true values
 - · (root) mean squared error:
 - · popular, well-understood, nicely differentiable · sensitive to single large errors (outliers)
 - mean absolute error:
 - less sensitive to outliers n
 - correlation coefficient
 - · insensitive to mean & scale

 $n\sum_{i} (f(x_i) - \mu_f) (y_i - \mu_y)$ $\sqrt{\sum_{i} (f(x_i) - \mu_f) \cdot \sum_{i} (y_i - \mu_g)}$

Correlation Coefficient

Completely insensitive to mean / scale:

- Intuition: did you capture the relative ordering?
 - · output larger f(x;) for larger y
- · output smaller f(xi) for smaller y
- · useful for ranking tasks:
- e.g. recommend a movie to a user Important to visualize data
- same CC for 4 predictors →

ROC curves

- Many algorithms compute "confidence" f(x)
- threshold to get decision; spam if f(x) > t, non-spam if f(x) ≤ t
 - Naïve Bayes: P(spam)x) > 0.5, Linear/Logistic/SVM: w^Tx > 0, Decision Tree: p_/p > 1
- threshold t determines error rates
 - False Positive rate = P(f(x)>t|ham), True Positive rate = P(f(x)>t|spam)
- Receiver Operating Characteristic (ROC):

Mean Squared Error

• Average (squared) deviation from truth $\sqrt{\frac{1}{n}}\sum_{i=1}^{n}(f(x_i)-y_i)^{i}$

· Very sensitive to outliers

- 99 exact, 1 off by \$10 \ same large effect
- all 100 wrong by \$1
- Sensitive to mean / scale
- $\mu_v = \frac{1}{n} \sum_i y_i \dots$ good baseline
- Relative squared error (Weka)

Summarv

- Training vs. generalization error
 - · under-fitting and over-fitting
- Estimate how well your system is doing its job
 - · how does it compare to other approaches?
 - · what will be the error rate on future data?
- Training and testing
- · cross-validation, leave-one-out, stratification, significance
- Evaluation measures
 - · accuracy, miss / false alarm rates, detection cost
 - · ROC curves
 - · regression: (root) mean squared/absolute error, correlation

Constidute 2014 Mater Laurake

Evaluating unsupervised methods

- Generally hard and subjective
 - · broad aim: did we capture the structure of the dataset?
 - · if possible: does it help us do some (supervised) task
- · Dimensionality reduction
 - · distance between data in original & reduced space
- Mixture models
 - · do we assign high probability to the training data?
- Clustering
 - · did we "discover" the latent sub-populations?

Contricts to 2014 Victor Laurenko

Significance tests

- · Often need to compare two systems: A, B
 - perform cross-validation: errors eA.1 ... eA.K, eB.1 ... eB.K
 - average errors: e_A < e_B {[| | | | | | | | | | | | | | |
 - · does this mean that A better than B?
 - · look at the variance of errors
- · Significance: could the difference be due to chance?
 - · analogy: 3 coin flips, always large difference, pure chance
 - null hypothesis H₀:
 - + $\mathbf{e}_{A,1}$... $\mathbf{e}_{A,K},\mathbf{e}_{B,1}$... $\mathbf{e}_{B,K}$ are random samples from the same population
 - want to show P(H₀) is very small → reject H₀ as improbable
 - let $d_i = e_{A,j} e_{B,j}$ $-i \frac{\sum_j d_j}{\sqrt{\sum_j (d_j \mu_j)^2}} \sim \text{Student's t distribution}$ caution: d_i must be independent (no overlap in data)

Copyright @ 2014 Victor Lavranto