Overview

- Curse of dimensionality
- Different ways to reduce dimensionality
- Principal Components Analysis (PCA)
- Example: Eigen Faces
- PCA for classification
- Witten & Frank section 7.3
 - only the PCA section required

True vs. observed dimensionality

- Get a population, predict some property
 - instances represented as (useful, height) pairs
 - what is the dimensionality of this data?

- Data points over time from different geographic areas over time:
 - X_1: # of skiing accidents
 - X_2: # of fire hydrant plumes
 - X_3: snow-snow expenditures
 - X_4: # of school closings
 - X_5: # patients with heart stroke
 - Temperature?

Curse of dimensionality (2)

- Machine learning methods are statistical in nature
 - count observations in various regions of some space
 - use counts to construct the predictor (fix)
 - e.g., decision trees: $p(X | rain = strong, T > 28)$
 - text: #documents in "hp" and "3d" and not "s" and ...

- As dimensionality grows: fewer observations per region
 - 3d: 3 regions, 2d: 32 regions, 1000d = hopeless
 - statistics need repetition
 - flip a coin once \Rightarrow head
 - P(head) = 100%?

Dealing with high dimensionality

- Use domain knowledge
 - feature engineering: SIFT, MFCC

- Make assumption about dimensions
 - independence: count along each dimension separately
 - smoothness: propagate class counts to neighboring regions
 - symmetry: e.g., invariance to order of dimensions: $x_1 \rightarrow x_k$

- Reduce the dimensionality of the data
 - create a new set of dimensions (variables)

Dimensionality reduction

- Goal: represent instances with fewer variables
 - try to preserve as much structure in the data as possible
 - discriminative: only structure that affects class separability

- Feature selection
 - pick a subset of the original dimensions $X_t, X_1, \ldots X_d, X_n$
 - discriminatively pick good class "predictors" (e.g., gain)

- Feature extraction
 - construct a new set of dimensions $E_1, E_2, \ldots E_m$
 - (linear) combinations of original $X_1, X_2, X_3, \ldots X_n$

Principal Components Analysis

- Defines a set of principal components
 - 1st: direction of the greatest variability in the data
 - 2^{nd}, perpendicular to 1st, greatest variability of what's left
 - ... and so on until d (original dimensionality)

- First $m<<d$ components become m new dimensions
 - change coordinates of every data point to these dimensions

Why greatest variability?

- Example: reduce 2-dimensional data to 1-d
 - $(x_1, x_2) \rightarrow e$ (along new axis e)
- Pick e to maximize variability
- Reduces cases when two points are close in e-space but very far in (x,y)-space
- Minimizes distances between original points and their projections
Principal components

- “Center” the data at zero: \(\mathbf{x}_n = \mathbf{x}_n - \mu \)
- Subtract mean from each attribute
- Compute covariance matrix \(\mathbf{X} \)
 - Covariance of dimensions \(x_1 \) and \(x_2 \):
 - If \(x_i \) and \(x_j \) tend to increase together:
 - Or does \(x_i \) decrease as \(x_j \) increases?
- Multiply a vector by \(\Sigma \) to get \(\Sigma \mathbf{v} \) again
 - Turns towards direction of variance
- Want vectors \(\mathbf{v} \) which aren’t turned: \(\Sigma \mathbf{v} = \lambda \mathbf{v} \)
 - \(\mathbf{v} \) eigenvectors of \(\Sigma \)
 - \(\lambda \) corresponding eigenvalues
 - Principal components = eigenvectors w. largest eigenvalues

Finding Principal Components

1. Find eigenvalues by solving: \(\det(\Sigma - \lambda I) = 0 \)
 \[
 \begin{vmatrix}
 2.0 - \lambda & 0.8 \\
 0.8 & 0.6 - \lambda
 \end{vmatrix} = 0
 \]
 \[
 (2.0 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = 0
 \]
 \[
 \lambda = 2.64, 0.56
 \]

2. Find ith eigenvector by solving: \(\Sigma \mathbf{v}_i = \lambda_i \mathbf{v}_i \)
 \[
 \begin{pmatrix}
 2.0 & 0.8 \\
 0.8 & 0.6
 \end{pmatrix}
 \begin{pmatrix}
 v_{11} \\
 v_{12}
 \end{pmatrix} =
 \begin{pmatrix}
 2.64 & 0.8 \\
 0.8 & 0.56
 \end{pmatrix}
 \begin{pmatrix}
 v_{21} \\
 v_{22}
 \end{pmatrix}
 \]
 \[
 \begin{pmatrix}
 2.0v_{11} + 0.8v_{12} = 2.64v_{21} + 0.8v_{22} \\
 0.8v_{11} + 0.6v_{12} = 0.8v_{21} + 0.56v_{22}
 \end{pmatrix}
 \]
 \[
 v_1 = \begin{pmatrix}
 22 \\
 1
 \end{pmatrix}
 \]

3. 1st PC: \([0.91, 0.41] \), 2nd PC: \([-0.41, 0.91] \)

Direction of greatest variability

- Select dimension \(\mathbf{e} \) which maximizes the variance
- Points \(\mathbf{x} \) “projected” onto vector \(\mathbf{e} \)
- Variance of projections: \(\sum (x_i - \bar{x})^2 = \sum \mathbf{v}_i \mathbf{e}_i \)
- Maximize variance
 - Want unit length: \(||\mathbf{e}|| = 1 \)
 - Add Lagrange multiplier
 \[\mathbf{e}^T \Sigma \mathbf{e} = \lambda \]
 \[\lambda \mathbf{e} = \Sigma \mathbf{e} \]
 \[\mathbf{e} \] is an eigenvector of \(\Sigma \)

Variance along eigenvector

\[\mathbf{V} = \frac{1}{n} \sum (x_i - \bar{x}) (x_i - \bar{x})^T = \mathbf{E}^T \sigma \mathbf{E} \]

PCA in a nutshell

1. Correlated high-d data
2. Center the points
3. Compute covariance matrix
4. Compute eigenvectors + eigenvalues
5. Select top \(k \) eigenvectors
6. Project data points to those eigenvectors
7. Un-correlated low-d data

PCA example: Eigen Faces

Input: data set of \(N \) face images

Face: \(K \times K \) bitmap of pixels

"Unfold" each bitmap to \(K \)-dimensional vector

Arrange in a matrix:
 \(\text{each face = column} \)

Matlab demo on course webpage

Eigen Faces: Projection

- Project new face to space of eigen-faces
- Represent vector as a linear combination of principal components
- How many do we need?
(Eigen) Face Recognition
- Face similarity
 - in the reduced space
 - insensitive to lighting, expression, orientation
- Projecting new "faces"
 - everything is a face

new face
projected to eigenfaces

Linear Discriminant Analysis
- LDA: pick a new dimension that gives:
 - maximum separation between means of projected classes
 - minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrices

PCA: practical issues
- Covariance extremely sensitive to large values
 - multiply some dimension by 1000
 - becomes a principal component
- normalize each dimension to zero mean and unit variance:
 \[\mathbf{x}' = (\mathbf{x} - \text{mean}) / \text{std dev} \]
- PCA assumes underlying subspace is linear
 - 1d: straight line
 - 2d: flat sheet
 - transform to handle non-linear spaces (manifolds)

PCA and classification
- PCA is unsupervised
 - maximizes overall variance of the data along a small set of directions
 - does not know anything about class labels
 - can pick direction that makes it hard to separate classes
- Discriminative approach
 - look for a dimension that makes it easy to separate classes

PCA vs. LDA
- LDA not guaranteed to be better for classification
 - assumes classes are unimodal Gaussians
 - fails when discriminatory information is not in the mean, but in the variance of the data
- Example where PCA gives a better projection:

Dimensionality reduction
- Pros
 - reflects our intuitions about the data
 - allows estimating probabilities in high-dimensional data
 - no need to assume independence etc.
 - dramatic reduction in size of data
 - faster processing (as long as reduction is fast), smaller storage
- Cons
 - too expensive for many applications (Twitter, web)
 - disastrous for tasks with fine-grained classes
 - understand assumptions behind the methods (linearity etc.)
 - there may be better ways to deal with sparseness

Summary
- True dimensionality \(\ll \) observed dimensionality
- High dimensionality \(\Rightarrow \) sparse, unstable estimates
- Dealing with high dimensionality:
 - use domain knowledge
 - make an assumption: independence / smoothness / symmetry
 - dimensionality reduction: feature selection / feature extraction
- Principal Components Analysis (PCA)
 - picks dimensions that maximize variability
 - eigenvectors of the covariance matrix
 - examples: Eigen Faces
 - variant for classification: Linear Discriminant Analysis