
IAML: Logistic Regression

Nigel Goddard and Victor Lavrenko
School of Informatics

Semester 1

1 / 24

Outline

I Logistic function
I Logistic regression
I Learning logistic regression
I Optimization
I The power of non-linear basis functions
I Least-squares classification
I Generative and discriminative models
I Relationships to Generative Models
I Multiclass classification
I Reading: W & F §4.6 (but pairwise classification,

perceptron learning rule, Winnow are not required)

2 / 24

Decision Boundaries

I In this class we will discuss linear classifiers.
I For each class, there is a region of feature space in which

the classifier selects one class over the other.
I The decision boundary is the boundary of this region. (i.e.,

where the two classes are “tied”)
I In linear classifiers the decision boundary is a line.

3 / 24

Example Data

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

4 / 24

Linear Classifiers

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

I In a two-class linear classifier, we
learn a function

F (x,w) = w>x + w0

that represents how aligned the
instance is with y = 1.

I w are parameters of the classifier
that we learn from data.

I To do prediction of an input x:

x 7→ (y = 1) if F (x,w) > 0

5 / 24

A Geometric View

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

w

6 / 24

Explanation of Geometric View

I The decision boundary in this case is

{x|w>x + w0 = 0}
I w is a normal vector to this surface
I (Remember how lines can be written in terms of their

normal vector.)
I Notice that in more than 2 dimensions, this boundary will

be a hyperplane.

7 / 24

Two Class Discrimination

I For now consider a two class case: y ∈ {0,1}.
I From now on we’ll write x = (1, x1, x2, . . . xd) and

w = (w0,w1, . . . xd).
I We will want a linear, probabilistic model. We could try

P(y = 1|x) = w>x. But this is stupid.
I Instead what we will do is

P(y = 1|x) = f (w>x)

I f must be between 0 and 1. It will squash the real line into
[0,1]

I Furthermore the fact that probabilities sum to one means

P(y = 0|x) = 1− f (w>x)

8 / 24

The logistic function

I We need a function that returns probabilities (i.e. stays
between 0 and 1).

I The logistic function provides this
I f (z) = σ(z) ≡ 1/(1 + exp(−z)).
I As z goes from −∞ to∞, so f goes from 0 to 1, a

“squashing function”
I It has a “sigmoid” shape (i.e. S-like shape)

The logistic function

� We need a function that returns probabilities (i.e. stays
between 0 and 1).

� The logistic function provides this
� f (z) = σ(z) ≡ 1/(1 + exp(−z)).
� As z goes from −∞ to∞, so f goes from 0 to 1, a

“squashing function”
� It has a “sigmoid” shape (i.e. S-like shape)

−6 −4 −2 0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 / 24
9 / 24

Linear weights

I Linear weights + logistic squashing function == logistic
regression.

I We model the class probabilities as

p(y = 1|x) = σ(
D∑

j=0

wjxj) = σ(wT x)

I σ(z) = 0.5 when z = 0. Hence the decision boundary is
given by wT x = 0.

I Decision boundary is a M − 1 hyperplane for a M
dimensional problem.

10 / 24

Logistic regression

I For this slide write w̃ = (w1,w2, . . .wd) (i.e., exclude the
bias w0)

I The bias parameter w0 shifts the position of the
hyperplane, but does not alter the angle

I The direction of the vector w̃ affects the angle of the
hyperplane. The hyperplane is perpendicular to w̃

I The magnitude of the vector w̃ effects how certain the
classifications are

I For small w̃ most of the probabilities within the region of
the decision boundary will be near to 0.5.

I For large w̃ probabilities in the same region will be close to
1 or 0.

11 / 24

Learning Logistic Regression

I Want to set the parameters w using training data.
I As before:

I Write out the model and hence the likelihood
I Find the derivatives of the log likelihood w.r.t the

parameters.
I Adjust the parameters to maximize the log likelihood.

12 / 24

I Assume data is independent and identically distributed.
I Call the data set D = {(x1, y1), (x2, y2), . . . (xn, yn)}
I The likelihood is

p(D|w) =
n∏

i=1

p(y = yi |xi ,w)

=
n∏

i=1

p(y = 1|xi ,w)yi (1− p(y = 1|xi ,w))1−yi

I Hence the log likelihood L(w) = log p(D|w) is given by

L(w) =
n∑

i=1

yi logσ(w>xi) + (1 − yi) log(1 − σ(w>xi))

13 / 24

I It turns out that the likelihood has a unique optimum (given
sufficient training examples). It is convex.

I How to maximize? Take gradient

∂L
∂wj

=
n∑

i=1

(yi − σ(wT xi))xij

I (Aside: something similar holds for linear regression

∂E
∂wj

=
n∑

i=1

(wT φ(xi)− yi)xij

where E is squared error.)
I Unfortunately, you cannot maximize L(w) explicitly as for

linear regression. You need to use a numerical method
(see next lecture).

14 / 24

Geometric Intuition of Gradient

I Let’s say there’s only one training point D = {(x1, y1)}.
Then

∂L
∂wj

= (y1 − σ(w>x1))x1j

I Also assume y1 = 1. (It will be symmetric for y1 = 0.)
I Note that (y1 − σ(w>x1)) is always positive because
σ(z) < 1 for all z.

I There are three cases:
I If x1 is classified as right answer with high confidence, e.g.,
σ(w>x1) = 0.99

I If x1 is classified wrong, e.g., (σ(w>x1) = 0.2)
I If x1 is classified correctly, but just barely, e.g.,
σ(w>x1) = 0.6.

15 / 24

Geometric Intuition of Gradient

I One training point, y1 = 1.

∂L
∂wj

= (y1 − σ(w>x1))x1j

I Remember: gradient is direction of steepest increase. We
want to maximize, so let’s nudge the parameters in the
direction ∂L

∂wj

I If σ(w>x1) is correct, e.g., 0.99
I Then (y1 − σ(w>x1)) is nearly 0, so we don’t change wj .

I If σ(w>x1) is wrong, e.g., 0.2
I This means w>x1 is negative. It should be positive.
I The gradient has the same sign as x1j
I If we nudge wj , then wj will tend to increase if x1j > 0 or

decrease if x1j < 0.
I Either way w>x1 goes up!

I If σ(w>x1) is just barely correct, e.g., 0.6
I Same thing happens as if we were wrong, just more slowly.

16 / 24

Fitting this into the general structure for learning algorithms:

I Define the task: classification, discriminative
I Decide on the model structure: logistic regression model
I Decide on the score function: log likelihood
I Decide on optimization/search method to optimize the

score function: numerical optimization routine. Note we
have several choices here (stochastic gradient descent,
conjugate gradient, BFGS).

17 / 24

XOR and Linear Separability

I A problem is linearly separable if we can find weights so
that

I w̃T x + w0 > 0 for all positive cases (where y = 1), and
I w̃T x + w0 ≤ 0 for all negative cases (where y = 0)

I XOR, a failure for the perceptron

XOR and Linear Separability

� A problem is linearly separable if we can find weights so
that

� w̃T x + w0 > 0 for all positive cases (where y = 1), and
� w̃T x + w0 ≤ 0 for all negative cases (where y = 0)

� XOR, a failure for the perceptron

� XOR can be solved by a perceptron using a nonlinear
transformation φ(x) of the input; can you find one?

11 / 24

I XOR can be solved by a perceptron using a nonlinear
transformation φ(x) of the input; exercise - can you find
one?

18 / 24

The power of non-linear basis functions

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Using two Gaussian basis functions φ1(x) and φ2(x)
Figure credit: Chris Bishop, PRML

As for linear regression, we can transform the input space if we
want x→ φ(x) 19 / 24

Generative and Discriminative Models

I Notice that we have done something very different here
than with naive Bayes.

I Naive Bayes: Modelled how a class “generated” the
feature vector p(x|y). Then could classify using

p(y |x) ∝ p(x|y)p(y)

. This called is a generative approach.
I Logistic regression: Model p(y |x) directly. This is a

discriminative approach.
I Discriminative advantage: Why spend effort modelling

p(x)? Seems a waste, we’re always given it as input.
I Generative advantage: Can be good with missing data

(remember how naive Bayes handles missing data). Also
good for detecting outliers. Or, sometimes you really do
want to generate the input.

20 / 24

Generative Classifiers can be Linear Too

Two scenarios where naive Bayes gives you a linear classifier.

1. Gaussian data with equal covariance. If
p(x|y = 1) ∼ N(µ1,Σ) and p(x|y = 0) ∼ N(µ2,Σ) then

p(y = 1|x) = σ(w̃T x + w0)

for some (w0, w̃) that depends on µ1, µ2, Σ and the class
priors

2. Binary data. Let each component xj be a Bernoulli variable
i.e. xj ∈ {0,1}. Then a Naı̈ve Bayes classifier has the form

p(y = 1|x) = σ(w̃T x + w0)

3. Exercise for keeners: prove these two results

21 / 24

Multiclass classification

I Create a different weight vector wk for each class
I Then use the “softmax” function

p(y = k |x) =
exp(wT

k x)∑C
j=1 exp(wT

j x)

I Note that 0 ≤ p(y = k |x) ≤ 1 and
∑C

j=1 p(y = j |x) = 1
I This is the natural generalization of logistic regression to

more than 2 classes.

22 / 24

Least-squares classification

I Logistic regression is more complicated algorithmically
than linear regression

I Why not just use linear regression with 0/1 targets?

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Green: logistic regression; magenta, least-squares regression
Figure credit: Chris Bishop, PRML

23 / 24

Summary

I The logistic function, logistic regression
I Hyperplane decision boundary
I The perceptron, linear separability
I We still need to know how to compute the maximum of the

log likelihood. Coming soon!

24 / 24

