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Overview

I The linear model
I Fitting the linear model to data
I Probabilistic interpretation of the error function
I Examples of regression problems
I Dealing with multiple outputs
I Generalized linear regression
I Radial basis function (RBF) models
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The Regression Problem

I Classification and regression problems:
I Classification: target of prediction is discrete
I Regression: target of prediction is continuous

II Training data: Set D of pairs (xi , yi) for i = 1, . . . ,n, where
xi ∈ RD and yi ∈ R

I Today: Linear regression, i.e., relationship between x and
y is linear.

I Although this is simple (and limited) it is:
I More powerful than you would expect
I The basis for more complex nonlinear methods
I Teaches a lot about regression and classification
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Examples of regression problems

I Robot inverse dynamics: predicting what torques are
needed to drive a robot arm along a given trajectory

I Electricity load forecasting, generate hourly forecasts two
days in advance (see W & F, §1.3)

I Predicting staffing requirements at help desks based on
historical data and product and sales information,

I Predicting the time to failure of equipment based on
utilization and environmental conditions
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The Linear Model

I Linear model

f (x; w) = w0 + w1x1 + . . .+ wDxD

= wT φ(x)

where φ(x) = (1, x1, . . . , xD)T = (1,xT )T

I The maths of fitting linear models to data is easy. We use
the notation φ(x) to make generalisation easy later.
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Toy example: Data
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With two features

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .

Instead of a line, a plane. With more features, a hyperplane.

Figure: Hastie, Tibshirani, and Friedman
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With more features

CPU Performance Data Set

I Predict: PRP: published relative performance
I MYCT: machine cycle time in nanoseconds (integer)
I MMIN: minimum main memory in kilobytes (integer)
I MMAX: maximum main memory in kilobytes (integer)
I CACH: cache memory in kilobytes (integer)
I CHMIN: minimum channels in units (integer)
I CHMAX: maximum channels in units (integer)
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With more features

PRP = - 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.46 CHMAX
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In matrix notation

I Design matrix is n × (D + 1)

Φ =


1 x11 x12 . . . x1D
1 x21 x22 . . . x2D
...

...
...

...
...

1 xn1 xn2 . . . xnD


I xij is the j th component of the training input xi

I Let y = (y1, . . . , yn)T

I Then ŷ = Φw is ...?
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Linear Algebra: The 1-Slide Version

What is matrix multiplication?

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,b =

b1
b2
b3


First consider matrix times vector, i.e., Ab. Two answers:

1. Ab is a linear combination of the columns of A

Ab = b1

a11
a21
a31

 + b2

a12
a22
a32

 + b3

a13
a23
a33


2. Ab is a vector. Each element of the vector is the dot

products between b and one row of A.

Ab =

(a11,a12,a13)b
(a21,a22,a23)b
(a31,a32,a33)b


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Linear model (part 2)

In matrix notation:

I Design matrix is n × (D + 1)

Φ =


1 x11 x12 . . . x1D
1 x21 x22 . . . x2D
...

...
...

...
...

1 xn1 xn2 . . . xnD


I xij is the j th component of the training input xi

I Let y = (y1, . . . , yn)T

I Then ŷ = Φw is the model’s predicted values on training
inputs.

13 / 38



Solving for Model Parameters

This looks like what we’ve seen in linear algebra

y = Φw

We know y and Φ but not w.

So why not take w = Φ−1y? (You can’t, but why?)

Three reasons:

I Φ is not square. It is n × (D + 1).
I The system is overconstrained (n equations for D + 1

parameters), in other words
I The data has noise
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Loss function

Want a loss function O(w) that

I We minimize wrt w.
I At minimum, ŷ looks like y.
I (Recall: ŷ depends on w)

ŷ = Φw
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Fitting a linear model to data

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.1. Linear least squares fitting with
X ∈ IR2. We seek the linear function of X that mini-
mizes the sum of squared residuals from Y .

I A common choice: squared error
(makes the maths easy)

O(w) =
n∑

i=1

(yi −wT xi)
2

I In the picture: this is sum of
squared length of black sticks.

I (Each one is called a residual,
i.e., each yi −wT xi )
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Fitting a linear model to data

I

O(w) =
n∑

i=1

(yi −wT xi)
2

= (y− Φw)T (y− Φw)

I We want to minimize this with respect to w.
I The error surface is a parabolic bowl

Fitting a linear model to data

� Given a dataset D of pairs (xi , yi) for i = 1, . . . , n
� Squared error makes the maths easy

E(w) =
n�

i=1

(yi − f (xi ; w))2

� The error surface is a parabolic bowl
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Figure: Tom Mitchell 5 / 17I How do we do this?

Figure: Tom Mitchell
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The Solution

I Answer: to minimize O(w) =
∑n

i=1(yi −wT xi)
2, set partial

derivatives to 0.
I This has an analytical solution

ŵ = (ΦT Φ)−1ΦT y

I (ΦT Φ)−1ΦT is the pseudo-inverse of Φ

I First check: Does this make sense? Do the matrix
dimensions line up?

I Then: Why is this called a pseudo-inverse? ()
I Finally: What happens if there is one feature? No features?
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Probabilistic interpretation of O(w)

I Assume that y = wT x + ε, where ε ∼ N(0, σ2)

I (This is an exact linear relationship plus Gaussian noise.)
I This implies that y |xi ∼ N(wT xi , σ

2), i.e.

− log p(yi |xi) = log
√

2π + logσ +
(yi −wT xi)

2

2σ2

I So minimising O(w) equivalent to maximising likelihood!
I Can view wT x as E [y |x].
I Squared residuals allow estimation of σ2

σ̂2 =
1
n

n∑
i=1

(yi −wT xi)
2
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Fitting this into the general structure for learning algorithms:

I Define the task: regression
I Decide on the model structure: linear regression model
I Decide on the score function: squared error (likelihood)
I Decide on optimization/search method to optimize the

score function: calculus (analytic solution)
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Sensitivity to Outliers

I Linear regression is sensitive to outliers
I Example: Suppose y = 0.5x + ε, where ε ∼ N(0,

√
0.25),

and then add a point (2.5,3):
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Diagnositics

Graphical diagnostics can be useful for checking:

I Is the relationship obviously nonlinear? Look for structure
in residuals?

I Are there obvious outliers?

The goal isn’t to find all problems. You can’t. The goal is to find
obvious, embarrassing problems.

Examples: Plot residuals by fitted values. Stats packages will
do this for you.
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Dealing with multiple outputs

I Suppose there are q different targets for each input x
I We introduce a different wi for each target dimension, and

do regression separately for each one
I This is called multiple regression
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Basis expansion

I We can easily transform the original attributes x
non-linearly into φ(x) and do linear regression on them
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Figure credit: Chris Bishop, PRML
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I Design matrix is n ×m

Φ =


φ1(x1) φ2(x1) . . . φm(x1)
φ1(x2) φ2(x2) . . . φm(x2)

...
...

...
...

φ1(xn) φ2(xn) . . . φm(xn)


I Let y = (y1, . . . , yn)T

I Minimize E(w) = |y− Φw|2. As before we have an
analytical solution

ŵ = (ΦT Φ)−1ΦT y

I (ΦT Φ)−1ΦT is the pseudo-inverse of Φ
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Example: polynomial regression

φ(x) = (1, x , x2, . . . , xM)T
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Figure credit: Chris Bishop, PRML
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More about the features

I Transforming the features can be important.
I Example: Suppose I want to predict the CPU performance.
I Maybe one the features is manufacturer.

x1 =


1 if Intel
2 if AMD
3 if Apple
4 if Motorola

I Let’s use this as a feature. Will this work?

I Not the way you want. Do you really believe AMD is double
Intel?
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More about the features

I Instead convert this into 0/1

x1 = 1 if Intel, 0 otherwise
x2 = 1 if AMD, 0 otherwise

...

I Note this is a consequence of linearity. We saw something
similar with text in the first week.

I Other good transformations: log, square, square root
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Radial basis function (RBF) models

I Set φi(x) = exp(−1
2 |x− ci |2/α2).

I Need to position these “basis functions” at some prior
chosen centres ci and with a given width α. There are
many ways to do this but choosing a subset of the
datapoints as centres is one method that is quite effective

I Finding the weights is the same as ever: the
pseudo-inverse solution.
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RBF example
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RBF example

●

0 1 2 3 4 5 6 7

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

y

●

0 1 2 3 4 5 6 7

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x
y

33 / 38



An RBF feature

Original data
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Another RBF feature

Notice how the feature functions “specialize” in input space.
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RBF example

Run the RBF with both basis functions above, plot the residuals

yi − φ(xi)
T w
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RBF: Ay, there’s the rub

I So why not use RBFs for everything?
I Short answer: You might need too many basis functions.
I This is especially true in high dimensions (we’ll say more

later)
I Too many means you probably overfit.
I Extreme example: Centre one on each training point.
I Also: notice that we haven’t seen yet in the course how to

learn the RBF parameters, i.e., the mean and standard
deviation of each kernel

I Main point of presenting RBFs now: Set up later methods
like support vector machines
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Summary

I Linear regression often useful out of the box.
I More useful than it would be seem because linear means

linear in the parameters. You can do a nonlinear transform
of the data first, e.g., polynomial, RBF. This point will come
up again.

I Maximum likelihood solution is computationally efficient
(pseudo-inverse)

I Danger of overfitting, especially with many features or
basis functions
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