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Regularization

I Regularization is a general approach to add a “complexity
parameter” to a learning algorithm. Requires that the
model parameters be continuous. (i.e., Regression OK,
Decision trees not.)

I If we penalize polynomials that have large values for their
coefficients we will get less wiggly solutions

Ẽ(w) = |y− Φw|2 + λ|w|2

I Solution is
ŵ = (ΦT Φ + λI)−1ΦT y

I This is known as ridge regression
I Rather than using a discrete control parameter like M

(model order) we can use a continuous parameter λ
I Caution: Don’t shrink the bias term! (The one that

corresponds to the all 1 feature.)
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Regularized Loss Function

I The overall cost function is the
sum of two parabolic bowls.
The sum is also a parabolic
bowl.

I The combined minimum lies
on the line between the
minimum of the squared error
and the origin.

I The regularizer just shrinks
the weights.

Credit: Geoff Hinton
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The effect of regularization for M = 9
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Figure credit: Chris Bishop, PRML
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M = 9
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For standard linear regression, we had

I Define the task: regression
I Decide on the model structure: linear regression model
I Decide on the score function: squared error (likelihood)
I Decide on optimization/search method to optimize the

score function: calculus (analytic solution)
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But with ridge regression we have

I Define the task: regression
I Decide on the model structure: linear regression model
I Decide on the score function: squared error with

quadratic regularizaton
I Decide on optimization/search method to optimize the

score function: calculus (analytic solution)

Notice how you can train the same model structure with
different score functions. This is the first time we have seen
this. This is important.
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A Control-Parameter-Setting Procedure

I Regularization was a way of adding a “capacity control”
parameter.

I But how do we set the value? e.g., the regularization
parameter λ

I Won’t work to do it on the training set (why not?)
I Two choices to consider:

I Validation set
I Cross-validation
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Using a validation set

I Split the labelled data into a training set, validation set, and
a test set.

I Training set: Use for training
I Validation set: Tune the “control parameters” according to

performance on the validation set
I Test set: to check how the final model performs
I No right answers, but for example, could choose 60%

training, 20% validation, 20% test
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Example of using a validation set

Consider polynomial regression:

1. For each m = 1,2, . . .M (you choose M in advance
2. Train the polynomial regression using

φ(x) = (1, x , x2, . . . , xm)T on training set (e.g., by
minimizing squared error). This produces a predictor fm(x).

3. Measure the error of fm on the validation set
4. End for
5. Choose the fm with the best validation error.
6. Measure the error of fm on the test set to see how well you

should expect it to perform
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Continuous Control Parameters

I For a discrete control parameter like polynomial order m
we could simply search all values.

I What about a quadratic regularization parameter λ. What
do we do then?

I Pick a grid of values to search. In practice you want the
grid to vary geometrically for this sort of parameter. e.g.,
Try λ ∈ {0.01,0.1,0.5,1.0,5.0,10.0}. Don’t bother trying
2.0, 3.0, 7.0.
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