
IAML: The Perceptron

Nigel Goddard and Victor Lavrenko
School of Informatics

Semester 1

1 / 5



A Simple Linear Algorithm

I Can we do something simpler than logistic regression?
And still be linear?

I For logistic regression we had this squashing function

f (z) = σ(z) ≡ 1/(1 + exp(−z))

I What if we just have a step function?

f (z) = sign[z] =

{
1 if z ≥ 0
−1 otherwise

I Notice that we call the classes y ∈ {−1,1}. This is just for
convenience later on.

I This architecture is called a perceptron, and has a very
long history.

2 / 5



Classifying Using a Perceptron

I Like any other linear classifier. Given w̃,w0 and a x to
classify, do

ŷ =

{
1 if w̃T x + w0 ≥ 0
−1 otherwise

I This is OK, but how are you going to train it?
I The problem is that you can’t use gradient descent

anymore.

3 / 5



The Perceptron Learning Rule

I The following rule was studied by Rosenblatt (1956)
repeat

for i in 1,2, . . .n
ŷ ← sign[wT xi ]
if ŷ 6= yi

w← w + yixi
until all training examples correctly classified

I Why does this make sense? Use same reasoning as
logistic regression gradient.

I Say yi = 1 and ŷ = 0. Then, after the update wT xi gets
bigger.

4 / 5



The Perceptron Learning Rule

I Amazing fact: If the data is linearly separable, the above
algorithm always converges to a weight vector that
separates the data.

I If the data is not separable, algorithm does not converge.
Need to somehow pick which weight vector to go with.

I There are ways to do this (not examinable), such as the
averaged perceptron and voted perceptron.

I This algorithm is a bit old and frumpy, but can still be very
useful. Especially when you add kernels, to get the kernel
perceptron algorithm. We may describe this later.

I Also can be seen as a very simple neural network, as we
may also see later.

5 / 5


